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Abstract

Computational fluid dynamics (CFD) methods have been coupled with structural

solvers to provide accurate predictions of limit cycle oscillations (LCO). There is, however,

a growing interest in understanding how uncertainties in flight conditions and structural

parameters affect the character of an LCO response, leading to failure of an aeroelas-

tic system. Uncertainty quantification of a stochastic system (parametric uncertainty)

with stochastic inputs (initial condition uncertainty) has traditionally been analyzed

with Monte Carlo simulations (MCS). Probability density functions (PDF) of the LCO

response are obtained from the MCS to estimate the probability of failure. A CFD so-

lution, however, can take days to weeks to obtain a single response, making the MCS

method intractable for large problems. A candidate approach to efficiently estimate the

PDF of an LCO response is the stochastic projection method. The classical stochastic

projection method is a polynomial chaos expansion (PCE). The PCE approximates the re-

sponse in the stochastic domain through a Fourier type expansion of the Wiener-Hermite

polynomials. An LCO response can be characterized as a subcritical or supercritical bi-

furcation, and bifurcations are shown to be discontinuities in the stochastic domain. The

PCE method, then, would be too inefficient for estimating the LCO response surface.

The objective of this research is to extend the stochastic projection method to include

the construction of B-spline surfaces in the stochastic domain. The multivariate B-spline

problem is solved to estimate the LCO response surface. An MCS is performed on this

response surface to estimate the PDF of the LCO response. The probability of failure

is then computed from the PDF. The stochastic projection method via B-splines is ap-

plied to the problem of estimating the PDF of a subcritical LCO response of a nonlinear

airfoil in inviscid transonic flow. The stochastic algorithm provides a conservative esti-

mate of the probability of failure of this aeroelastic system two orders of magnitude more

efficiently than performing an MCS on the governing equations.

xiv



QUANTIFYING INITIAL CONDITION AND PARAMETRIC

UNCERTAINTIES IN A NONLINEAR AEROELASTIC SYSTEM

WITH AN EFFICIENT STOCHASTIC ALGORITHM

I. Introduction

Fluid-structure interaction can result in the loss of dynamic stability to a time periodic

instability that grows unbounded, i.e., flutter [1]. When nonlinear aerodynamics (e.g.,

transient shocks or boundary layer separation) or nonlinear structural parameters are

present to counter the growth of the unstable mode, the dynamic response may stabilize

to a limit cycle oscillation (LCO) [2]. The study of LCO in aeroelastic systems is an active

area of research [3, 4, 5, 6]. Flight data from fighter aircraft with external stores indicate

that the LCO response is characterized by antisymmetric motion of the wing and a lateral

motion of the fuselage and, consequently, the aircrew. LCO can lead to fatigue failure of

the wing structure. The lateral motion LCO induces can degrade mission effectiveness by

not allowing the aircrew to track a target or lead the aircrew to believe that the aircraft

has begun to flutter, causing a mission abort. In severe cases, LCO represents a hazard

to flight safety [2].

Computational fluid dynamics (CFD) methods have been coupled with structural

solvers to provide accurate predictions of LCOs [7]. There is, however, a growing interest

in understanding how uncertainties in flight conditions and structural parameters affect

the character of an LCO response, leading to failure of an aeroelastic system [8]. Un-

certainty quantification of a stochastic system (parametric uncertainty) with stochastic

inputs (initial condition uncertainty) has traditionally been analyzed with Monte Carlo

simulations (MCS) [9]. In an MCS, N random realizations of the uncertainty parameters

are input into the system of equations to obtain N realizations of the response. The

1-1



probability density function (PDF) of the response is then approximated from the N re-

alizations. The MCS method only requires that the distribution of the input parameters

be known. A CFD solution, however, can take days to weeks to obtain a single response,

making the MCS method intractable for large problems.

Other techniques that have been used to solve stochastic systems with stochastic

inputs are based upon Galerkin’s method [9]. These include reduced order modeling

(ROM) [10, 11, 12] and polynomial chaos expansions (PCE) [13, 14, 15, 9, 16, 17, 18,

19, 20, 21]. The reduced order model represents a full order solution with an optimal

basis, in the mean square sense, through a Karhunen-Loeve expansion. Monte Carlo

simulations can efficiently be run on the ROM, but only for small variations in the inputs.

Thus, ROM is useful for examining responses near the mean value but cannot predict

responses with large variations in the input [10]. The PCE method, on the other hand,

allows large variations in the input parameters and has been shown, for certain classes

of problems, to be far more efficient than an MCS [15]. The classical PCE method, also

known as the Wiener-Hermite expansion [22], falls into a general category of stochastic

projection methods. Of the two methods, ROM or stochastic projection, the stochastic

projection method was chosen, due to its greater efficiency and robustness in handling

large variations, to quantify the effects of uncertainty and estimate the probability of

failure for a nonlinear aeroelastic system.

1.1 Overview of Stochastic Projection Methods

Stochastic projection methods, unlike the Karhunen-Loeve expansions employed by

ROM, provide a way to estimate the expansion of a response without a priori knowledge

of the form of the response in the stochastic domain. A random basis, denoted Ψi(ξ),

orthogonal with respect to the distribution of the input uncertainty, is typically selected.

The deterministic coefficients of the expansion, α̂i(t), are either computed as part of the

time integration (intrusive approach) or estimated from a limited MCS (non-intrusive

1-2



approach). The expansion of some response α(t, ξ) then takes the form [14, 15]

α(t, ξ) =

P
∑

i=0

α̂i(t)Ψi(ξ) (1.1)

where the upper limit P is based on the order of the expansion and the number of input

uncertainties, i.e. the dimension, d, of ξ. The vector ξ contains the random variables

that characterize the uncertainty distribution of the input parameters. For a Gaussian

distribution, the uncertainty of some input parameter, βα, is characterized by its mean

value, β̄α, and its standard deviation, β̃α, as

βα = β̄α + ξ1β̃α (1.2)

where ξ1 is a zero mean, unit variance Gaussian random variable.

With the intrusive approach, the expansion in Eq. (1.1) is substituted directly into

the governing equations of motion. For example, if an equation of motion took the form

L[α(t)] + βαα
3 = 0 (1.3)

where L is a linear differential operator, then the stochastic projection method would,

with a Galerkin approach (see, for example, Le Mâıtre et al. [18]), produce the following

system of equations to be solved

L[α̂n(t)]+β̄α

P
∑

i=0

P
∑

j=0

P
∑

k=0

α̂iα̂jα̂k

〈ΨiΨjΨk,Ψn〉
〈Ψn,Ψn〉

+β̃α

P
∑

i=0

P
∑

j=0

P
∑

k=0

α̂iα̂jα̂k

〈ξ1ΨiΨjΨk,Ψn〉
〈Ψn,Ψn〉

= 0

(1.4)

where the free index, n, is in the range 0 ≤ n ≤ P . The expected value operator, 〈 〉, is

defined as

〈f(ξ),Ψn(ξ)〉 =

∫

∞

−∞

∫

∞

−∞

· · ·
∫

∞

−∞

f(ξ)Ψn(ξ)w(ξ) dξ1 dξ2 · · ·dξd (1.5)
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where f(ξ) is any function of ξ and w(ξ) is the Guassian PDF

w(ξ) =

(

1√
2π

)d

e−
1

2
ξT ξ . (1.6)

The condition of orthogonality with respect to the Guassian PDF substantially reduces

the number of non-zero expected values for a linear problem. As nonlinearity increases,

the number of non-zero terms grows rapidly due to the coupling evident in Eq. (1.4).

Computational efficiency is rapidly lost when high order expansions of highly nonlinear

equations are required [22, 23, 24, 25, 26].

To gain back some computational efficiency, researchers have employed the non-

intrusive approach. This is a sampling approach and considered non-intrusive since

parametric uncertainty is not included analytically in the equations of motion. A limited

MCS is performed and the responses obtained are used to estimate the coefficients of the

expansion. Due to the random selection of samples, the expected value operator is again

employed. The coefficients are estimated from [8]

α̂i =
〈α,Ψi〉
〈Ψn,Ψn〉

. (1.7)

This non-intrusive approach substantially reduces the number of expected values that

need to be pre-computed and stored and is considered more appropriate for highly non-

linear problems.

Thus far the discussion has centered around the mathematics of the stochastic

projection method. The stochastic projection also has a physical interpretation, i.e. it

can be viewed as approximating the response surface across the entire stochastic domain

[9, 15, 25]. The stochastic projection method, though, differs from traditional response

surface methodologies (RSM) [27] in that the expansion is global whereas RSM is con-

cerned with local expansions about some point of interest. Thus, the stochastic projection

method is an interpolation algorithm. This viewpoint explains many of the issues that,

in particular, caused the PCE approach to be mostly abandoned by the 1970’s [15]. The
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original PCE method assumed a Gaussian uncertainty in the parameters and the orthog-

onal basis functions chosen for the expansion were the Hermite polynomials [13, 14, 15].

Chorin [22] discussed the lack of sufficient frequency content in the Hermite polynomials

to approximate discontinuities to stochastic solutions of the inviscid Burger’s equation.

Crow and Canavan [23] demonstrated that, while only low order Hermite expansions

are computationally practical, high order Hermite polynomials are required to allow an

energy cascade for approximating a turbulent flow.

Despite these findings, recent literature on the generalized PCE through an Askey

scheme [19], which matches distribution functions to the appropriate orthogonal poly-

nomials, still cites the optimality of polynomial expansions without regard to the issue

of frequency content. Millman et al. [24, 25], however, showed that by changing to a

Fourier basis, termed a Fourier chaos expansion (FCE), stochastic projections with dis-

continuities could be better approximated. A comparison of the stochastic projections

from the PCE and FCE approaches is shown in Figure 1.1, where for this example the

random variable ξ2 represents the uncertainty in the initial pitch angle of a nonlinear

airfoil in the presence of modeled aerodynamics [25]. The ability of the FCE to better

approximate the discontinuity than the PCE method leads to a better approximation of

the PDF of the LCO response, as shown in Figure 1.2. These results were based on the

intrusive method and, while a substantial improvement over the PCE method, the FCE

method was still too computationally inefficient to be useful in a design environment due

to multiple summations such as the ones in Eq. (1.4).

Numerical techniques have been advanced to overcome the computational expense

of computing the multiple summations. For example, Mathelin and Hussaini [28] employ

a stochastic collocation scheme in the solution of the Reimann problem that reduces the

computational effort from order P 3, O(P 3), to O(P ). However, they note that the upper

limit P has to be large (P = 200) to accurately account for the moving discontinuity

[28].
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Figure 1.2 PDFs of a supercritical response, MCS vs. 8th order PCE and FCE [25]

It will be shown that bifurcations, such as the LCO response of an airfoil, are

discontinuities in the stochastic domain. Thus, the numerical issues faced by Chorin [22],

Crow and Canavan [23], and Mathelin and Hussaini [28] must be dealt with in an efficient

manner. In interpolation theory, discontinuities are treated as piecewise polynomials and

researchers commonly employ B-splines to approximate these piecewise polynomials [29].

Constructing B-spline surfaces is also a collocation approach since the nodes of the surface

are fitted exactly [30]. The nodes of the response (B-spline) surface can be computed
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from a nonintrusive approach and, since the B-spline method is non-Galerkin, expected

values need not be computed or stored [31].

1.2 Scope of Research

The objective of this research is to extend the stochastic projection method to

include the construction of B-spline surfaces in the stochastic domain. These surfaces

should adequately resolve discontinuities that arise from the bifurcations (LCO response)

of a nonlinear airfoil in an inviscid transonic flow. An efficient MCS over the response

surface will allow a rapid estimation of the PDF of an LCO response. The probability

of failure can then be computed from the PDF. The scope of this research is defined by

the following thesis statement, approach, and assumptions:

1.2.1 Thesis Statement. The probability density function of a limit cycle os-

cillation response, and hence the probability of failure, can be accurately and efficiently

estimated with a small sample size obtained from the solution of the nonlinear time de-

pendent aeroelastic system of equations.

1.2.2 Research Approach and Assumptions. The implementation and effec-

tiveness of the stochastic projection method via B-splines will be demonstrated for the

CFD application of a two-dimensional pitching and plunging airfoil in inviscid, transonic

compressible flow. The structural components will be nonlinear in pitch. Since an MCS

is impractical for the CFD application, the stochastic projection method via B-splines

will first be validated against MCS results of a model problem: a structurally nonlinear

airfoil in a linearly modeled, low speed incompressible flow. Convergence of the PDFs

for the CFD application will then be presented.

The uncertainty distributions in this research effort are limited to Gaussian distri-

butions, as given in Eq. (1.6). The choice of Gaussian distributions was made early in the

research phase to allow a direct comparison with the classical PCE formulation. As will

be shown, the choice in distributions is not critical to the development of this stochastic
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algorithm. The number of uncertainties was limited to one initial condition uncertainty

and one parametric uncertainty.

1.3 Document Organization

The remainder of this document is organized as follows:

Chapter II: Demonstrates estimating the probability of failure of a nonlinear airfoil

in flow modeled with linear aerodynamics through a traditional Monte Carlo analysis.

Chapter III: Develops the theory of the stochastic projection method via B-splines.

The stochastic algorithm is implemented on the nonlinear airfoil with linear aerodynamics

to estimate the probability of failure.

Chapter IV: Describes the development of an inviscid aeroelastic code (EULER-

AE) that computes the flow properties over a pitching and plunging airfoil with the Euler

equations.

Chapter V: Implements the stochastic algorithm on the nonlinear airfoil in inviscid

transonic compressible flow to estimate the probability of failure.

Chapter VI: Summarizes the results and conclusions of the current research. Dis-

cusses topics of future research suggested by the currrent research.
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II. Nonlinear Pitch and Plunge Airfoil with Linear Aerodynamics

2.1 Introduction

Before choosing an expansion to represent a response in the stochastic domain, it is

useful to examine the behavior of a set of nonlinear equations with parametric and initial

condition uncertainties. An appropriate model problem to begin this analysis should be

easily integrated in time such that an MCS is practical. To this end, a nonlinear pitch

and plunge airfoil with linear aerodynamics is chosen. A stability analysis of this model

problem was accomplished by Lee et al [3]. The goal of this chapter is not to replicate

the stability analysis of a system of ordinary differential equations with the methods one

finds in, for example, Seydel [32], but rather, to perform a numerical analysis of the

behavior of the bifurcations of a system in the presence of uncertainties. Results from

Lee et al. [3] and Beran and Pettit [8] are a basis for the validity of the numerical analysis

performed here.

The equations of motion for a nonlinear pitch and plunge airfoil are first derived.

The aerodynamics needed to compute the lift and moment coefficients are obtained from

Fung’s model [1] for incompressible flow based on the circulation theory of lift. A set

of ordinary differential equations are then derived, following Lee et al [3]. PDFs of the

LCO response in pitch, αLCO, are developed from an MCS based on parametric and

initial condition uncertainty. These PDFs are also used to generate the probability of

failure based on encountering an LCO response. This analysis will serve as basis for

the development in the next chapter of a stochastic algorithm that will approximate the

PDFs obtained here without performing an MCS on the governing equations.

2.2 Equations of Motion

Various formulations for the pitching and plunging airfoil have been developed

[1, 3, 33, 34]. The notation shown in Figure 2.1 is used for the derivation of the equations

of motion for this model problem [1, 3]. The plunge, h, is measured positive in the
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Figure 2.1 Schematic of a pitch and plunge airfoil

downward direction. The elastic axis (or hinge point) is located the distance ahb from

the midchord, b, and is measured positive aft. The pitch angle, α, is positive nose up

about the elastic axis. The center of mass is located the distance xαb from the elastic

axis, also measured positive aft. Summing the forces and moments, and assuming small

pitch angles, results in

mḧ+ Sαα̈+Khh = −L (2.1a)

Sαḧ+ Iαα̈+Kα(α + βαα
3 + γαα

5) = Mea (2.1b)

where L is the lift, Mea is the moment about the elastic axis, Sα is the first moment of

inertia, Iα is the second moment of inertia, Kh is the plunge spring constant, and Kα

is the pitch spring constant. The constants βα and γα control the amount of structural

nonlinearity. Note that [1]

Sα = mxαb (2.2a)

Iα = mr2
αb

2 (2.2b)

Kh = mω2
h (2.2c)

Kα = Iαω
2
α (2.2d)
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where m is the mass of the airfoil, rαb is the radius of gyration, and ωh and ωα are the

uncoupled natural frequencies of plunge and pitch, respectively. Also

L =
1

2
ρ∞V

2
∞
c Cl (2.3a)

Mea =
1

2
ρ∞V

2
∞
c2Cm (2.3b)

where c is the chord length, ρ∞ is the freestream density, V∞ is the freestream velocity,

and Cl and Cm are the lift and moment coefficients, respectively. By defining the following

nondimensional parameters

y =
h

b
(2.4a)

ωr =
ωh

ωα

(2.4b)

Vr =
V∞
ωαb

(2.4c)

µs =
m

ρ∞b2π
. (2.4d)

where y is the nondimensional plunge, ωr is the frequency ratio, Vr is the reduced velocity,

and µs is the mass ratio, and differentiating with respect to the nondimensional time

τ =
t V∞
b

, (2.5)

Eqs. (2.1a) and (2.1b) can be rewritten as

ÿ + xαα̈ +

(

ωr

Vr

)2

y = − 1

πµs

Cl (2.6a)

xα

r2
α

ÿ + α̈ +
1

V 2
r

(α + βαα
3 + γαα

5) =
2

πµsr2
α

Cm . (2.6b)

Both the lift and moment coefficients are a function of time. Lee et al. [3] provide

expressions for incompressible flow over a pitching and plunging airfoil based on a model
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given by Fung [1]

Cl(τ) = π (ÿ − ahα̈ + α̇) + 2π

[

α(0) + ẏ(0) +

(

1

2
− ah

)

α̇(0)

]

φ(τ)

+ 2π

∫ τ

0

φ(τ − σ)

[

α̇(σ) + ÿ(σ) +

(

1

2
− ah

)

α̈(σ)

]

dσ

(2.7a)

Cm(τ) = π

(

1

2
+ ah

) [

α(0) + ẏ(0) +

(

1

2
− ah

)

α̇(0)

]

φ(τ)

+ π

(

1

2
+ ah

)
∫ τ

0

φ(τ − σ)

[

α̇(σ) + ÿ(σ) +

(

1

2
− ah

)

α̈(σ)

]

dσ

+
1

2
π ah (ÿ − ahα̈) − 1

2
π

(

1

2
− ah

)

α̇− 1

16
π α̈

(2.7b)

where the Wagner function, φ(τ), is given by [1]

φ(τ) = 1 − ψ1 e
−ε1τ − ψ2 e

−ε2τ . (2.8)

Fung [1] provides several values for the constants in the Wagner function. The values of

ψ1 = 0.165, ψ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3 are obtained from Jones [35].

2.3 Numerical Integration

Equations (2.6a), (2.6b), (2.7a) and (2.7b) represent a complete description of a

pitching and plunging airfoil with incompressible aerodynamics. Since stability analysis

techniques require a system of ordinary differential equations, Lee et al. [3] introduced

four new variables

w1(τ) =

∫ τ

0

e−ε1(τ−σ)α(σ) dσ (2.9a)

w2(τ) =

∫ τ

0

e−ε2(τ−σ)α(σ) dσ (2.9b)

w3(τ) =

∫ τ

0

e−ε1(τ−σ)h(σ) dσ (2.9c)
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w4(τ) =

∫ τ

0

e−ε2(τ−σ)h(σ) dσ. (2.9d)

These variables allow Eqs. (2.6a) and (2.6b) to be rewritten as

c0ÿ + c1α̈+ c2ẏ + c3α̇+ c4y + c5α+ c6w1 + c7w2 + c8w3 + c9w4 = f(τ) (2.10a)

d0ÿ + d1α̈ + d2α̇ + d3ẏ + d4α+ d5α
3 + d6α

5 + d7y

+d8w1 + d9w2 + d10w3 + d11w4 = g(τ)
(2.10b)

where the constants in Eq. (2.10a) are given by

c0 = 1 +
1

µs

c1 = xα − ah

µs

c2 =
2

µs

(1 − ψ1 − ψ2) c3 =
1 + 2

(

1
2
− ah

)

(1 − ψ1 − ψ2)

µs

c4 =

(

ωr

Vr

)2

+
2

µs

(ψ1ε1 + ψ2ε2)

c5 =
2

µs

[

(1 − ψ1 − ψ2)

+

(

1

2
− ah

)

(ψ1ε1 + ψ2ε2)

]

c6 =
2

µs

ψ1ε1

[

1 −
(

1

2
− ah

)

ε1

]

c7 =
2

µs

ψ2ε2

[

1 −
(

1

2
− ah

)

ε2

]

c8 = − 2

µs

ψ1ε
2
1 c9 = − 2

µs

ψ2ε
2
2

and the constants in Eq. (2.10b) are given by

d0 =
xα

r2
α

− ah

µsr2
α

d1 = 1 +
1 + 8a2

h

8µsr2
α

d2 =
(1 − 2ah) − (1 + 2ah) (1 − 2ah) (1 − ψ1 − ψ2)

2µsr2
α

d3 = −(1 + 2ah) (1 − ψ1 − ψ2)

µsr2
α

d4 =
1

V 2
r

− (1 + 2ah) (1 − ψ1 − ψ2)

µsr2
α

− (1 + 2ah) (1 − 2ah) (ψ1ε1 + ψ2ε2)

2µsr2
α

d5 =
βα

V 2
r

d6 =
γα

V 2
r

d7 = −(1 + 2ah) (ψ1ε1 + ψ2ε2)

µsr2
α
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d8 = −(1 + 2ah)ψ1ε1

[

1 −
(

1
2
− ah

)

ε1

]

µsr2
α

d9 = −(1 + 2ah)ψ2ε2

[

1 −
(

1
2
− ah

)

ε2

]

µsr2
α

d10 =
(1 + 2ah)ψ1ε

2
1

µsr2
α

d11 =
(1 + 2ah)ψ2ε

2
2

µsr2
α

.

The forcing terms, f(τ) and g(τ) are given by

f(τ) =
2

µs

[(

1

2
− ah

)

α(0) + y(0)

]

(

ψ1ε1e
−ε1τ + ψ2ε2e

−ε2τ
)

(2.11a)

g(τ) = −1 + 2ah

2r2
α

f(τ). (2.11b)

With this formulation, the equations of motion can be separated into eight first order,

ordinary differential equations. By letting x1 = α, x2 = α̇, x3 = y, x4 = ẏ, x5 = w1,

x6 = w2, x7 = w3, and x8 = w4, the following equations result

ẋ1 = x2 (2.12a)

ẋ2 =
c0H − d0P

c1d0 − c0d1

(2.12b)

ẋ3 = x4 (2.12c)

ẋ4 = −c1H − d1P

c1d0 − c0d1

(2.12d)

ẋ5 = x1 − ε1x5 (2.12e)

ẋ6 = x1 − ε2x6 (2.12f)

ẋ7 = x3 − ε1x7 (2.12g)

ẋ8 = x3 − ε2x8 (2.12h)

where

P = c2x4 + c3x2 + c4x3 + c5x1 + c6x5 + c7x6 + c8x7 + c9x8 − f(τ) (2.13a)
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and

H = d2x2 + d3x4 + d4x1 + d5x
3
1 + d6x

5
1 + d7x3

+ d8x5 + d9x6 + d10x7 + d11x8 − g(τ).
(2.13b)

With the aeroelastic equations formulated as a system of first order, ordinary dif-

ferential equations, a variety of methods are available for numerical integration. The

method chosen here is a simple forward Euler integration. The time step should be 1/256

of the shorter period of the two coupled modes of oscillation for an accurate time inte-

gration [3]. Lee et al. [3] used a time step of ∆t = 0.1 to satisfy this requirement. The

same time step was used in this study.

2.4 Bifurcation Behavior

Bifurcations are a change in the stability of a system that results in different dy-

namic responses [32]. A linear aeroelastic system, at some critical reduced velocity, will

undergo a change from a stable stationary (no motion) solution to divergent flutter (un-

bounded motion). This critical point is termed by aeroelasticians as the flutter point

[1]. Nonlinear aeroelastic systems can stabilize beyond the flutter point to a periodic

dynamic response [3, 2, 4]. Mathematicians term this change from a stationary response

to a periodic response the Hopf bifurcation point [32]. Note that the flutter point and

the Hopf bifurcation point are coincident for an aeroelastic system. The periodic motion

beyond the flutter point has been termed limited amplitude flutter or limit cycle oscilla-

tion (LCO). While the latter term is more a mathematical term, its use is prevalent in

the aeroelastic literature [2]. In this study, the terms flutter point and LCO are used.

Two different types of dynamic responses are examined in this study. The first type

of response was described above and is termed a supercritical response. A supercritical

response is a stable periodic solution for reduced velocity beyond the flutter point. As

the reduced velocity decreases through the flutter point, the periodic solution reduces to

the stationary solution. A supercritical response was obtained by Beran and Pettit [8]
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and Millman et al. [31] from the aeroelastic system described in the previous sections

with the following structural parameters:

µs = 100 ah = −0.5 xα = 0.25

ωr = 0.2 βα = 3 rα = −0.5

γα = 20

The value for γα was selected to to stabilize a subcritical response, which will be discussed

shortly. For this supercritical case, both Beran and Pettit [8] and Millman et al. [31]

located the flutter point at Vr ≈ 6.28. The time histories of pitch at Vr = 6.1, 6.2, 6.3

and 6.4 with an initial pitch of α(0) = 1◦ are shown in Figure 2.2. The remaining initial

conditions are given by α̇(0) = y(0) = ẏ(0) = 0. For reduced velocities below the flutter

point, Figs. 2.2(a) and (b), the initial pitch displacement damps to no motion. At reduced

velocities above the flutter point, Figs. 2.2(c) and (d), the initial pitch displacement

causes the airfoil to exhibit an LCO. Also note that a longer time integration is required

to obtain the final motion of the airfoil the closer the reduced velocity is to the flutter

point. By plotting the LCO amplitude at various reduced velocities, the bifurcation

diagram in Figure 2.3 results. Time integrations near the flutter point were carried out

to τ = 20, 000 before the stable response (stationary or LCO) was achieved.

Lee et al. [3] demonstrated that a subcritical response, i.e., a dynamically unstable

response, results when a negative value for the cubic spring constant, βα, and a zero

quintic restoring force (γα = 0) are applied [3]. At reduced velocities above the flutter

point, the airfoil will exhibit divergent flutter for any initial pitch except α(0) = 0, the

dynamically unstable stationary branch. With a large initial pitch, divergent flutter can

also be exhibited at reduced velocities below the flutter point. A bifurcation diagram of

a subcritical response is shown in Figure 2.4. The source of this instability can be seen

in the pitch spring term

Kα(α + βαα
3 + γαα

5)
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Figure 2.2 Time histories of pitch with α(0) = 1.0◦
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Figure 2.4 Bifurcation diagram of a subcritical response

in Eq. (2.1b). With the absence of the quintic spring constant γα, a negative value for

cubic spring constant βα can be viewed as loosening, or weakening, the pitch spring. For

sufficiently large values of pitch, the negative cubic spring constant dominates the pitch

spring resulting in a loss of stability.

In order to regain stability in the structure, Millman et al. [25] added the quintic

restoring force in Eq. (2.1b). At large amplitudes, the quintic spring constant γα domi-

nates the pitch spring and the structure exhibits a large amplitude LCO. Following Lee

et al. [3], the cubic spring constant was changed from βα = 3 to βα = −3. Time histories

of pitch are shown in Figure 2.5 at reduced velocities below and above the flutter point.

At Vr = 6.2, below the flutter point, two responses are possible. With an initial pitch

of α(0) = 5◦, Figure 2.5(a), the airfoil stabilizes at the stationary solution. However,

if the initial pitch is increased to α(0) = 10◦, Figure 2.5(b), the airfoil exhibits a large

amplitude LCO. At reduced velocities above the flutter point, Figure 2.5(c), even a small

initial pitch, α(0) = 1◦, can lead to a large amplitude LCO. A bifurcation diagram with

this subcritical response is shown in Figure 2.6.

The turning point in Figure 2.6 connects the subcritical branch to the stable pe-

riodic motion branch [32] and occurs at Vr ≈ 5.9. The large amplitude LCO branch

exhibits a hysteresis, i. e. the stationary solution bifurcates to the large amplitude LCO
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branch at the flutter point but the large amplitude LCO branch bifurcates to the sta-

tionary solution at the turning point. This hysteresis is not simply a pure mathematical

construct, the same behavior has been observed in wind tunnel tests of a large aspect

ratio wing [4] as well as in flight test of fighter aircraft [2]. The subcritical response with

a turning point presents a greater risk to an aircraft than a supercritical response since

a very large amplitude LCO can occur below the classically defined flutter point.

2.5 Uncertainty Quantification

While the analysis in the previous section was primarily deterministic, the initial

pitch angle α(0) was carefully chosen, particularly in the case of the subcritical response,

so that the desired behavior could be demonstrated. The initial pitch angle plays a key

role in the large time behavior of this system. Thus, the initial pitch is chosen as a

stochastic input.

It was also demonstrated in the previous section that the value of the cubic spring

constant played a significant role in the dynamics of the response. While the location

of the flutter point does not change with the introduction of the nonlinear structural

parameters, the location of the turning point can change as these structural parameters

are varied. For this reason, the second uncertainty parameter chosen in this study is the

cubic spring constant, βα.

Before analyzing how these uncertainties, α(0) and βα, propagate in time, a distri-

bution of the uncertainties must be selected. While any distribution can be chosen for

this model problem, the most common starting point for stochastic projection methods

such as the polynomial chaos expansion [15] is the Gaussian distribution. The Gaussian

distribution allows a random variable to be expressed in terms of its mean value and

its standard deviation. For example, realizations of the initial pitch angle and the cubic
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spring constant are obtained from

α(0) = ᾱ(0) + ξ1α̃(0) (2.14a)

βα = β̄α + ξ2β̃α (2.14b)

where the barred (¯) quantities represent mean values, the tilde (˜) quantities represent

standard deviations, and ξ1 and ξ2 are zero mean, unit variance Gaussian random vari-

ables. The mean value in the initial pitch angle is chosen as ᾱ(0) = 0. In order to obtain

the desired responses shown in the previous section, a large initial pitch angle is required.

This large initial pitch angle is generated by selecting α̃(0) = 0.2 rads (≈ 11.5◦). The

mean value of the cubic spring constant determines whether a supercritical or subcritical

response is produced. That is,

β̄α =











3 generates a supercritical response

−3 generates a subcritical response

(2.15)

The standard deviation of the cubic spring constant was chosen as β̃α = 0.3 for both

the supercritical and subcritical responses. It should be emphasized that the parameters

were chosen only to observe the desired responses.

Monte Carlo simulations of the nonlinear aeroelastic system are now performed

in order to quantify the effects of the uncertainties. An MCS begins by choosing a

sample size, N , and then obtaining N realizations of ξ1 and ξ2 based on the Gaussian

distribution. These realizations of the random variables provide realizations of α(0) and

βα from Eqs. (2.14a) and (2.14b). Time integrations of the governing equations are then

performed N times until a fully developed response (stationary or LCO) is obtained. The

responses are saved as realizations and, through a Parzen windowing approach [36], used

to estimate the PDF of the LCO response.
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Figure 2.7 Sample PDFs

The Parzen windowing approach provides a smooth estimate of the PDF through

the following procedure. The maximum and minimum values of the LCO response are

first determined. A buffer value, ∆, is computed as ten percent of the maximum value.

Equally spaced nodes are selected on the interval [(αLCO)min − 0.5∆, (αLCO)max + 0.5∆],

where αLCO is the pitch LCO response. Gaussian distributions of a specified standard

deviation, σ, are placed over each of the nodes and the Gaussian densities of the responses

are averaged together [36]. The standard deviation chosen was σ = 0.005(αLCO)max. The

choice in the interval and σ ensured the area under the PDF was identically one. With

the smooth approximation to the PDF, the trapezoidal rule was used to obtain the area

under the PDF. Sample PDFs at Vr = 6.5 for the supercritical response and Vr = 6.2 for

the subcritical case are shown in Figures 2.7(a) and (b), respectively. It should be noted

that for the subcritical case, the finite width of the PDF at αLCO = 0 is a result of the

smoothing accomplished by the Parzen windowing approach.

Large time integrations were required to ensure the responses obtained were fully

developed. In order to increase the efficiency of the MCS, i.e., decrease the required

computer run times, the minimum sample size is selected that provides an accurate PDF

of the response. One method for determining the minimum sample size required is to
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run increasingly larger sample sizes and check for a convergence of the mean value, µ,

of the response [37]. An MCS was run on the supercritical case with Vr = 6.5 and the

subcritical case with Vr = 6.2. Computer run times and the mean LCO response are

shown in Table 2.1. Each MCS for the supercritical case was integrated to a maximum

time of τmax = 3000. This was to ensure extremely small initial pitch angles achieved

a fully developed LCO. For the subcritical response, a maximum time of τmax = 10000

was required to achieve either a fully developed stationary response or a fully developed

LCO. From Table 2.1, it was determined that N = 4000 would be a sufficient sample

size to obtain accurate PDFs of both the supercritical and subcritical responses with the

least amount of computational effort.

The effect of the uncertainties on the bifurcation behavior is demonstrated for the

supercritical case in Figure 2.8(a) and (b). The supercritical response now has a range

of possible LCO amplitudes for each reduced velocity owing to the uncertainty in the

cubic spring constant. The PDFs allow an estimate of failure for the aeroelastic system.

Failure is defined as the probability of encountering an LCO. Due to the smoothing of the

Parzen windowing approach near αLCO = 0 for the subcritical case, failure is determined

from a pitch LCO amplitude exceeding ±1◦. The area under the PDF from αLCO = 1◦ to

the maximum LCO amplitude yields the probability of failure. The probability of failure

for the supercritical case is 100% at and above the flutter point.

Table 2.1 Convergence of the mean on MCSs of supercritical and subcritical responses

Supercritical (τmax = 3000) Subcritical (τmax = 2000)
N Run time (secs) µ Run time (secs) µ

1000 27.98 9.03 154.1 13.9
2000 55.86 9.04 307.9 13.2
3000 83.88 9.04 460.0 13.4
4000 112.1 9.05 614.4 13.5
5000 140.1 9.04 767.7 13.6
6000 169.8 9.04 922.5 13.6
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Figure 2.8 Effects of uncertainties on the supercritical response
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Figure 2.9 Effects of uncertainties on the subcritical response

The effects of the uncertainties on the subcritical response are shown in Figs. 2.9(a)

and (b). Again, the uncertainty in the cubic spring constant leads to a range of LCO

amplitudes. Introducing uncertainty into the nonlinear system affects the location of

the turning point, which now has a probability of occurring as low as Vr ≈ 5.7. This

variation in the location of the turning point agrees well with the results reported by

Beran and Pettit[8]. With the same definition of failure given above, the probability of
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Figure 2.10 Probability of failure for the subcritical response

failure for the subcritical case is shown in Figure 2.10. While LCO below the flutter

point was introduced by the nonlinear restoring forces, the initial condition uncertainty

and parametric uncertainty increase the range where failure can occur below the flutter

point.

2.6 Summary

In this chapter, a nonlinear aeroelastic system was described that leads to supercrit-

ical or subcritical responses based upon the structural parameters chosen. Uncertainty

was introduced in the analysis by assigning a Gaussian distribution to the initial pitch

angle and the cubic spring constant in pitch. The response examined was the LCO am-

plitude in pitch. It was shown that the flutter point is a function of the linear system

only, while the turning point of the subcritical response is affected by both nonlinearities

and uncertainties. The turning point is associated with LCO, and structural failure,

at reduced velocities below the flutter point. Thus, to predict probability of failure,

both nonlinearities and uncertainties must be included in the design analysis. The next

chapter presents a new stochastic algorithm that can efficiently quantify the effects of

uncertainties in the nonlinear aeroelastic system.
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III. Development and Implementation of the Stochastic Projection

Method via B-Splines

3.1 Introduction

The previous chapter presented an MCS analysis to determine the probability of

failure of an aeroelastic system. While the MCS approach is robust enough to capture

both supercritical and subcritical bifurcations, it is computationally inefficient. In this

chapter, the stochastic projection of the pitch LCO response, αLCO, is examined with

respect to the stochastic axes. This examination reveals that the underlying behavior

of a bifurcation in the stochastic domain is discontinuous and not amenable to spectral

approaches, such as the PCE and FCE methods. A B-spline algorithm for the stochastic

projection method is developed and applied to the problem of the structurally nonlin-

ear airfoil with linear aerodynamics studied in the previous chapter. It is shown that

this B-spline stochastic algorithm is both efficient and robust enough to deal with the

discontinuous behavior associated with bifurcations.

3.2 Stochastic Projection

A stochastic projection is a projection of the response onto the random variables.

Typically this projection is obtained at a specific instance in time. For a time domain

analysis, at a very large time, these projections can become so complicated (nonlinear,

discontinuous) in form that even a very large order expansion cannot capture the shape of

the projection [26]. Beran and Pettit [8] circumvent this issue with the non-intrusive PCE

approach. The non-intrusive PCE approach essentially removes the time dependency by

obtaining samples of the LCO response once the LCO is fully developed. Beran and

Pettit’s [8] results were obtained from an efficient cyclic approach, not involving a time

domain analysis. This present work examines the stochastic projections from a time

domain approach.
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Figure 3.1 Stochastic projection of αLCO onto the random variables ξ1 and ξ2 (super-
critical response)

To better understand the behavior of the stochastic projections, two projections

are plotted in Figure 3.1. These projections were obtained from a four thousand MCS

for the supercritical case (β̄α = 3.0) at Vr = 6.5. The responses were sorted with respect

to each random variable. In Figure 3.1(a) a four thousand run MCS was performed with

the cubic spring constant held at βα = 3 while the initial pitch angle was allowed to vary.

The stochastic projection of the response, αLCO, with respect to the uncertainty in the

initial pitch angle, ξ1, appears to be a smooth continuous function, but a singular point

exists at ξ1 = 0. This singularity corresponds to the dynamically unstable equilibrium

branch on the bifurcation diagram (Figure 2.3). The MCS was repeated holding the

initial pitch angle fixed at α(0) = 15◦, to ensure LCO developed, and allowing the cubic

spring constant βα to vary. Figure 3.1(b) shows the stochastic projection of the response

with respect to the uncertainty in the cubic spring constant, ξ2 is a smooth continuous

function.

The stochastic projections for the subcritical response βα = −3 at Vr = 6.2 are

shown in Figure 3.2. In Figure 3.2(a), the stochastic projection of the response with

respect to the uncertainty in initial pitch indicates two jumps between a large LCO
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amplitude and a stationary response. This discontinuous behavior is a manifestation of

the subcritical branch with a turning point as illustrated in Figure 2.6. Above a certain

absolute value of the initial pitch angle, an LCO develops. Below this absolute value of

the initial pitch angle, a dynamically stable stationary solution is achieved. In Figure

3.2(b), with an initial pitch angle of α(0) = 15◦ and βα allowed to vary, the stochastic

projection with respect ξ2 is a smooth continuous function.

3.3 Stochastic Projection Method via B-Splines

The stochastic projections shown in the previous section demonstrate that while a

polynomial expansion may be appropriate for the supercritical case (Figure 3.1), provided

the singular point at ξ1 = 0 is not included in the development of the expansion, a

polynomial expansion is inappropriate for the subcritical case (Figure 3.2) due to the

discontinuous behavior in the projection with respect to ξ1. Indeed, any spectral approach

would have difficulty in resolving the discontinuous behavior.
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The stochastic projections can be treated, however, as piecewise continuous over the

interval of interest. Splines would then be an appropriate choice for approximating the

stochastic projections. An important property of the multivariate B-splines chosen for

this work is that they are a compact support basis; that is, the influence of any particular

B-spline coefficient extends over a few intervals [30]. The practical importance of this

property is that oscillations in the vicinity of discontinuous behavior can be avoided

with the proper choice in the order of the B-spline. The order used in this work is

kξ1 = kξ2 = 2, which is equivalent to a piecewise linear interpolation [30]. The expansion

of the univariate B-splines for ξ1 and ξ2 are given by

α(ξ1) =

Nξ1
∑

i=1

α̂i,ξ1Bi,kξ1
,xξ1

(ξ1) (3.1)

α(ξ2) =

Nξ2
∑

j=1

α̂j,ξ2Bj,kξ2
,xξ2

(ξ2) (3.2)

where xξ1 is the vector of Nξ1 knots on the ξ1 axis and xξ2 is the vector of Nξ2 knots

on the ξ2 axis. The multivariate B-spline is the tensor product of the two univariate

B-splines and can be explicitly written as [30]

α(ξ1, ξ2) =

Nξ1
∑

i=1

Nξ2
∑

j=1

α̂ijBj,kξ2
,xξ2

(ξ2)Bi,kξ1
,xξ1

(ξ1) . (3.3)

The coefficient matrix, made up of the elements α̂ij , is solved by repeated evaluations

of the univariate spline interpolation problem, the details of which are given in de Boor

[30].

Now an efficient stochastic algorithm that is robust enough to identify bifurcations

can be described. First, an interval is chosen in the stochastic domain over which samples

of the LCO amplitude will be obtained. Next, the location of nodes to be sampled in

that interval is determined. The multivariate B-spline that approximates the response

surface in the stochastic domain is then determined. Finally, an MCS is performed on
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this response surface to estimate the PDF of the response. Each of the steps of this

algorithm are now described in detail.

The interval selected is based on the distribution of random variables. For this

work, the random variables have a Gaussian distribution. Strictly speaking, the interval

defined for a Gaussian random variable is the whole real line. There is, however, a

practical limit to this interval. The random variables control parametric uncertainties

and these parameters must be kept within specified bounds in order for the equations of

motion to be numerically well behaved. In a real world application the mean and standard

deviation may be dictated by manufacturing, instrument error, or physical phenomena

such as wind gusts. For this model problem the mean and standard deviation were

selected to illustrate supercritical and subcritical responses. It was found that for the

large standard deviation chosen for the initial pitch angle, α̃(0) = 0.2 radians, the model

problem became unstable for large values of ξ1 (ξ1 > 4). Since

(

1√
2π

)2 ∫ 4

−4

∫ 4

−4

e−
1

2
(ξ2

1
+ξ2

2) dξ1 dξ2 ≈ 0.99994 , (3.4)

99.99% of all responses occur on the interval [-4,4] in both stochastic axes. Thus, this

was the interval selected for both the ξ1 and ξ2 axes.

With the interval selected, nodes along the stochastic axis must be chosen that will

efficiently capture the desired projection. In order for the B-spline to be valid over the

entire interval, nodes must be selected that span the entire interval. However a Gaussian

distribution of the nodes would cluster the nodes near the mean value, leaving a large

gap between the Gaussian spaced nodes and the endpoints of the interval. Nodes at ±4

are required to span the interval. Nodes at ±2.5 are added to bridge the gap between the

Gaussian spaced nodes and the endpoints of the interval. The Gaussian spaced nodes are

determined by integration of the Gaussian PDF, w(ξ1) or w(ξ2) (Eq. (1.6) with d = 1).

That is, the nodes are determined in one dimension and the same nodes are used in the

other dimension. The determination of the nodes proceeds as follows. Some number of
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Table 3.1 Gaussian distributed nodes

I = 2 I = 4 I = 8
– – ±0.15731
– ±0.31864 ±0.31684
– – ±0.48878

±0.67449 ±0.67449 ±0.67449
– – ±0.88715
– ±1.15035 ±1.15035
– – ±1.53412

±2.5 ±2.5 ±2.5
±4.0 ±4.0 ±4.0

nodes are selected on the interval [0, 4]. Let this number of nodes be represented by I

along the ξ1 axis and J along ξ2 axis. Noting that

∫ 4

0

1√
2π
e−

1

2
ξ2

1 dξ1 ≈
1

2
(3.5)

the remaining nodes are selected based on equal intervals of the probabilities. For exam-

ple, with I = 2 and one node fixed at ξ1 = 4, the second node is determined from

∫ a

0

1√
2π
e−

1

2
ξ2

1 dξ1 =
1

4
(3.6)

where a is the location of the node. A simple search leads to a value of a = 0.67449.

Proceeding in a like manner for I = 4 and I = 8 leads to the node values given in Table

3.1. Due to the symmetry of the nodes and the extra nodes at ξ1 = ±2.5, the total

number of nodes along the ξ1 stochastic axis is given by 2I + 2.

Samples of the response are obtained at the selected values of ξ1 and ξ2. From these

samples, the multivariate B-spline problem can be solved for the coefficient matrix, α̂ij

in Eq. (3.3). After these coefficients are determined, an MCS is performed on Eq. (3.3).

This MCS is extremely efficient, as is demonstrated in the next section.

Before preceeding to the next section, it is noted that this algorithm fits into the

stochastic projection framework through the following derivation. Consider the set of
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nodes x such that xi ∈ [−a, a] and x1 = −a < x2 < · · · < xI = a for some integer

I. Since it was noted that the above algorithm is a piecewise linear interpolation, the

appropriate basis for expansion would be the hat function, which has the property [30]

Ψj(xi) = δij (3.7)

where δij is the Dirac delta function. Thus

Ψj(xi) =







1 i = j

0 i 6= j
(3.8)

Also notice that δj(x) = δ(x − xj), which indicates sampling at a node. Then inner

products with w(x) = 1 are given as

〈Ψi, δj〉 =

∫ a

−a

Ψi(x)δ(x− xj) dx = Ψi(xj) = δij (3.9)

〈xΨi, δj〉 =

∫ a

−a

xΨi(x)δ(x− xj) dx = xjΨi(xj) = xjδij (3.10)

The piecewise linear approximation to the response α(t, x) becomes

α(t, x) =

I
∑

i=1

α̂i(t)Ψi(x) (3.11)

and can be substituted into Eq. (1.3). By performing the stochastic projection as de-

scribed by Le Mâıtre [18] and making use of the above inner products, the following

equation results

L[α̂j(t)] +
(

β̄α + xj β̃α

)

α̂3
j (t) = 0 (3.12)

Thus, the samples of the random variable are used to obtain samples of the response and

a piecewise linear approximation to the response is obtained from the B-splines. While

the PCE method provides a best fit to the stochastic projection and converges, in the

mean square sense to an MCS, [38] the piecewise linear interpolation is exact at the
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nodes and converges exactly to the MCS when the number of nodes equals the number

of samples obtained by the MCS.

3.4 Results

The stochastic algorithm is now applied to the aeroelastic system described in the

previous chapter. The supercritical case is examined first. Setting I = 2 and holding the

cubic spring constant at βα = 3.0, samples were obtained along the ξ2 axis at Vr = 6.5 to

determine the coefficients α̂i,ξ1 in Eq. (3.1). An MCS on Eq. (3.1) produced the stochastic

projection shown in Figure 3.3(a). Setting J = 2 and holding the initial pitch constant

at α(0) = 15◦, samples were obtained along the ξ2 axis. The univariate spline, Eq. (3.2)

was solved for the coefficients α̂j,ξ2 and an MCS on this equation produced the stochastic

projection shown in Figure 3.3(b). These projections are in excellent agreement with the

projections shown in Figure 3.1. This should be expected since the projections are linear

or very nearly linear across the respective intervals.
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Figure 3.3 Stochastic projection of αLCO onto the random variables ξ1 and ξ2 (super-
critical response)
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Figure 3.4 PDF comparisons for the supercritical response

Now allowing both the initial pitch angle and the cubic spring constant to vary and

setting I = 2 and J = 2, thirty-six samples of the LCO responses were obtained. After

the coefficients in Eq. (3.3) were determined, an MCS was performed on this equation.

The PDF of the response was computed and compared to the PDF from the MCS on

the governing equations. The agreement between the two PDFs is excellent, as shown in

Figure 3.4. Again this should be expected due to the smoothness of the approximated

functions. Obtaining samples of the response, solving the multivariate B-spline problem,

and performing an MCS on Eq. (3.3) was two orders of magnitude faster than performing

an MCS on the governing equations.

The subcritical response was examined at Vr = 6.2. The stochastic projection in

Figure 3.5(a) was obtained as before with the initial pitch angle allowed to vary and the

cubic spring constant held at βα = −3. The stochastic projection in Figure 3.5(b) was

obtained by allowing the cubic spring constant to vary and keeping the initial pitch at

α(0) = 15◦. The projection with respect to ξ1 required I = 8 (18 samples) to obtain

a good approximation to the discontinuous behavior. The projection with respect to ξ2

required J = 4 (10 samples) to obtain the proper curvature. These stochastic projections

compare well with those in Figure 3.2.

Again allowing both the initial pitch angle and the cubic spring constant to vary,

PDFs were obtained from the stochastic projection method with I = 2, 4, and 8 and
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Figure 3.6 PDF comparisons for the subcritical response

J = 4, (60, 100, and 180 samples, respectively). These PDFs are compared with the PDF

from the MCS and are shown in Figure 3.6. As the number of nodes increase along the ξ1

axis, agreement with the PDF obtained from the MCS improves rapidly. The PDF with

I = 4, is already in excellent agreement with the MCS results. With I = 8, the steeper

slope in the approximation of the discontinuous behavior results in fewer realizations

between the peak and secondary responses (a better bi-modal approximation).
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Figure 3.7 Bifurcation diagrams built with the stochastic projection method

With the stochastic algorithm verified for the above cases, bifurcation diagrams

with the inclusion of uncertainties were developed. For β̄α = 3, PDFs were obtained over

the same range of reduced velocities as for the MCSs. Setting I = J = 2 was sufficient for

these cases since all the responses were supercritical. For β̄α = −3, the PDFs below the

flutter point were obtained with I = 8 and J = 4, since these responses were subcritical.

Above the flutter point, once again I = J = 2 was sufficient. These PDFs were then

used to build the bifurcation diagrams shown in Figure 3.7. For the supercritical case,

the mean pitch LCO amplitudes from the stochastic projection method are within 2%

of the amplitudes from the MCS results (see Figure 2.8(b)). The mean pitch LCO

amplitudes for the subcritical case were much more difficult to determine. Due to the

lack of resolution in the ξ1 axis, numerous responses are realized between the stationary

response and the maximum pitch LCO amplitude (see Figure 3.6). A minimum pitch

LCO amplitude could not be determined below Vr = 5.902. Thus, while the stochastic

algorithm accurately predicts an LCO response below Vr = 5.902, only the maximum

value of that response could be determined. Above Vr = 5.902, the mean pitch LCO

amplitudes were within 2% of the amplitudes predicted by the MCS analysis (see Figure
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Figure 3.8 Comparison of probability of failure predictions with MCS and B-spline
algorithm

2.9(b)). It should be noted that the time required to build these bifurcation diagrams

was approximately two orders of magnitude less than with the MCS approach.

From the subcritical responses, an estimate of the probability of failure was ob-

tained. As in the MCS analysis, failure is defined as encountering an LCO. The proba-

bility of failure is computed by integrating the area under the PDF from αLCO = 1◦ to

the maximum LCO pitch amplitude. A comparison between the MCS prediction and the

B-spline prediction is shown in Figure 3.8. The presence of realizations between the peak

and secondary responses lead to a conservative estimate in the probability of failure, as

seen in Table 3.2. Each failure estimate from the MCS required over ten minutes of com-

puter time, while each estimate from the stochastic algorithm required approximately

fifteen seconds.

3.5 Summary

An efficient algorithm for determining the propagation of uncertainties in a highly

nonlinear aeroelastic system has been presented. The uncertainty in the initial pitch

angle α(0) was allowed to propagate in a time dependent manner until an LCO or a

dynamically stable solution was achieved. The stochastic algorithm consisted of building

an interpolating function in the stochastic domain through sampling and the use of a
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Table 3.2 Estimates for the probability of failure

Reduced Velocity (Vr) MCS (%) Stochastic Algorithm (%) Difference (%)
5.70 0.005 0.91 0.905
5.75 0.33 1.02 0.69
5.80 0.70 2.52 1.82
5.85 3.23 5.17 1.94
5.90 7.23 10.9 3.67
5.95 12.4 17.1 4.7
6.00 19.2 27.6 8.4
6.05 26.1 33.8 7.7
6.10 35.5 38.2 2.7
6.15 45.0 50.7 5.7
6.20 57.1 61.4 4.3
6.25 74.1 77.5 3.4
6.279 100.0 100.0 0

multivariate B-spline. Advantages of this method over the traditional PCE approach

were that expected values were never computed or stored and two orders of magnitude

reduction in computational time over an MCS analysis were obtained. Based on the PDFs

predicted by the stochastic algorithm, a rapid and accurate estimate of the probability

of failure was also obtained. It should be noted that while, thus far, only the pitch LCO

amplitude has been examined as a response, the stochastic algorithm is easily extended

to examining other responses such as plunge LCO amplitude or the coupled pitch and

plunge frequency. These additional responses will be examined in the next chapter where

a computation of the nonlinear aerodynamics is obtained from the Euler equations.
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IV. The Inviscid Aeroelastic Code EULER-AE

4.1 Introduction

To this point aerodynamic nonlinearities in the aeroelastic system have been ne-

glected. Limit cycle oscillations often occur in transonic flow [2], where the nonlinearities

due to moving shocks cannot be ignored. Other effects, such as boundary layer separation

and turbulence, are also important in the study of LCO at transonic speeds [5]; however,

many researchers have demonstrated LCOs on typical airfoil sections with the inviscid

Euler equations [34, 39, 40, 41]. Therefore, validation of the stochastic algorithm pre-

sented in the previous chapter does not require viscosity to be included in the modeling

of the fluid dynamics.

An inviscid aeroelastic code, EULER-AE, has been developed to investigate the

response of a nonlinear airfoil in an inviscid transonic flow. The code implements a finite

volume formulation and loose coupling between the structure and fluid, i.e., the structural

dynamics lag the fluid dynamics by the integration time step size. The airfoil selected

for this study was the symmetric NACA 64A006 airfoil. This airfoil was investigated by

Morton and Beran [34] to determine the flutter point of a linear airfoil (βα = γα = 0) in

inviscid flow. The grid generation and dynamic boundary conditions used by EULER-AE

are presented. The nonlinear airfoil equations are modified to use the notation of Morton

and Beran [34]. The strategy of EULER-AE is to first attempt convergence to a steady

state solution at a fixed initial pitch angle. Once convergence or the maximum number

of iterations is achieved, the airfoil is allowed to move subject to the lift and moment

induced by the fluid flow (See Figure 4.1). Static solutions with the airfoil at different

angles of attack were computed with EULER-AE and compared against results from

the commercial fluid solver FLUENTTM as well as experimental data [42]. A comparison

with the parameters used by Morton and Beran to obtain an LCO for this airfoil is also

presented.
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Figure 4.1 EULER-AE Flow Chart

4.2 Euler Equations

Before presenting the Euler equations, a new set of nondimensional parameters are

introduced. In Sec. 2.2 the nondimensionalization was based on the airfoil midchord, b,

as a reference length. In CFD algorithms, the airfoil chord, c, is typically chosen as a

reference length. The nondimensional parameters are now

x∗ =
x

c
y∗ =

y

c
u∗ =

u

V∞
v∗ =

v

V∞

ρ∗ =
ρ

ρ∞
p∗ =

p

ρ∞V 2
∞

E∗

t =
Et

ρ∞V 2
∞

t∗ =
t V∞
c

(4.1)

From this point the asterisk is dropped from the nondimensional parameters and the

primitive variables and grid locations are assumed to be nondimensional unless otherwise

stated.
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The Euler equations in generalized coordinates with a moving grid are given by [43]

∂

∂t

(

1

J
Q

)

+
∂

∂ξ

(

1

J
E

)

+
∂

∂η

(

1

J
F

)

= 0 (4.2)

where the Jacobian J is equivalent to the cell volume, the conserved variables are

Q =

















ρ

ρu

ρv

Et

















(4.3)

and the flux vectors are given by

E =

















ρU

ξxp+ ρUu

ξyp+ ρUv

(p+ Et)U − ξtp

















, F =

















ρV

ηxp+ ρV u

ηyp+ ρV v

(p+ Et)V − ηtp

















. (4.4)

The contravarient velocities U and V are obtained from

U = ξt + ξxu+ ξyv (4.5a)

V = ηt + ηxu+ ηyv (4.5b)

For a finite volume approach, the spatial metrics of transformation (ξx, ξy, ηx, and ηy)

are obtained from a relationship with the area vectors normal to the cell faces [44]. The

temporal metrics of transformation are obtained from a first order backward difference.

At time level n, the x-component and y-component of the grid velocity are given by

xt =
xn − xn−1

∆t
(4.6a)

yt =
yn − yn−1

∆t
, (4.6b)
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respectively, and the metrics are computed from

ξt = − (ξxxt + ξyyt) (4.7a)

ηt = − (ηxxt + ηyyt) (4.7b)

An equation of state is required to close the system of equations. For an ideal gas

with a constant ratio of specific heats, γ, the equation of state is written as

Et =
p

γ − 1
+

1

2
ρ

(

u2 + v2
)

(4.8)

where γ = 1.4.

4.3 Numerical Procedure

The two-stage Runge-Kutta time integration in EULER-AE uses Euler’s forward

difference as a predictor and the trapezoidal method as a corrector. Atkinson [29] shows

this is scheme is second order accurate in time. Notationally, the integration scheme can

be written as

Qn+1
i,j = Qn

i,j +
1

2

∆ti,j
Vi,j

(

R
n
i,j + R

∗

i,j

)

(4.9)

where Vi,j is the cell volume, R
n

i,j is the residual at time step n, and R
∗

i,j is the residual

obtained from the Euler prediction.

The residual Ri,j is computed from the flux differencing Roe method [45], a first

order (spatial) approximate Riemann solver. The Roe method linearizes the flux Jacobian

matrices [A] and [B], where

[A] =
∂E

∂Q
[B] =

∂F

∂Q
, (4.10)

by replacing these matrices with Roe averaged matrices [Ã] and [B̃] so that the solution

to the linear problem provides an approximate solution to the nonlinear problem [44].
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The averaging is based on the states to the left and right of the node being computed,

e.g.

QL = Qi−1 (4.11a)

QR = Qi (4.11b)

along a constant j line. The Roe averaged matrices are represented by the diagonal

transformations

[Ã] = [T̃ξ][|Λ̃ξ|][T̃ξ]
−1 (4.12a)

[B̃] = [T̃η][|Λ̃η|][T̃η]
−1 (4.12b)

where [T̃ξ] is composed of columns of the right eigenvectors of [Ã], [T̃ξ]
−1 is composed of

rows of the left eigenvectors of [Ã], and [|Λ̃ξ|] is a diagonal matrix of the absolute values

of eigenvalues of [Ã]. The diagonalization for [B̃] is made up of similar matrices. An

efficient formulation of the Roe method that pre-multiplies the transformation matrices

[45] is used in EULER-AE.

The residuals are computed by summing the fluxes across the cell faces from

Ri,j =
(

Êi+ 1

2
,j − Êi− 1

2
,j

)

+
(

F̂i,j+ 1

2

− F̂i,j− 1

2

)

(4.13)

where

Êi+ 1

2
,j =

1

2

[

ER + EL − [T̃ξ][|Λ̃ξ|][T̃ξ]
−1(QR − QL)

]

i+ 1

2
,j

(4.14a)

F̂i,j+ 1

2

=
1

2

[

FR + FL − [T̃η][|Λ̃η|][T̃η]
−1(QR − QL)

]

i,j+ 1

2

. (4.14b)

Higher order spatial discretizations can be obtained from the monotone upstream-

centered schemes for strong conservation laws (MUSCL) [44]. The MUSCL scheme ex-
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trapolates left and right states from more than one neighboring node. For example

QL = Qi−1 +
1 − κ

4
δQi− 3

2

+
1 + κ

4
δQi− 1

2

(4.15a)

QR = Qi −
1 + κ

4
δQi− 1

2

− 1 − κ

4
δQi+ 1

2

(4.15b)

where δ is the central difference operator [44]. The constant κ determines the order and

method of the MUSCL scheme from

κ =







































−1 2nd order upwind scheme

0 2nd order Fromm’s method

1
3

3rd order upwind scheme

1 2nd order central difference

(4.16)

The third order Roe method was used throughout this investigation.

Because of the extrapolations made to obtain higher order schemes non-physical

overshoots, such as negative densities, are numerically possible in regions with discon-

tinuities, i.e. shocks. Limiters are used to prevent these overshoots by enforcing the

first order Roe method in the vicinity of discontinuities. EULER-AE uses the MINMOD

limiter [44] to control overshoots.

For steady state convergence, local time stepping is used as an acceleration tech-

nique. The time step ∆ti,j is determined from each cell volume and local contravarient

velocities from

∆ti,j = Vi,j

CFL
1
2
[(λ1)i,j + (λ2)i,j ]

(4.17)

where

(λ1)i,j = ui,j

(

ξx
J

)

i,j

+ vi,j

(

ξy
J

)

i,j

+ ai,j

√

(

ξx
J

)2

i,j

+

(

ξy
J

)2

i,j

(4.18a)

(λ2)i,j = ui,j

(ηx

J

)

i,j
+ vi,j

(ηy

J

)

i,j
+ ai,j

√

(ηx

J

)2

i,j
+

(ηy

J

)2

i,j
(4.18b)
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and CFL, the Courant-Friedrichs-Lewey number, is a multipication factor that is chosen

to achieve the largest possible explicit time step without losing stability. For the third

order Roe scheme employed, CFL = 1 was used.

A time accurate integration requires a global time step. This global time step is

the minimum time step obtained from Eq. (4.17). For this study, a constant time step

of ∆t = 0.0002 was chosen. This was equivalent to using CFL ≈ 1.25 in Eq. (4.17).

4.4 Grid Generation

Gordnier and Melville [7] demonstrated the ability to predict LCO behavior is

dependent upon the fidelity of the grid. They showed that for an inviscid solver the

estimated flutter point was in better agreement with experimental data with a coarse

grid rather than with a fine grid. Since boundary layer effects, such as flow separation

and turbulence, cannot be modeled by an inviscid code, the shock is predicted in the

wrong location. A high order spatial integration on a fine grid results in the shock being

sharply refined at this wrong location, leading to errors in the lift and moment coefficients.

While grid refinement was an issue near the leading edge of the NACA 64A006 airfoil due

to the small leading edge radius, the grid was allowed to be coarser towards the trailing

edge in order to spread (or weaken) the shock over a larger area.

The ordinates for the NACA 64A006 airfoil are shown in Table 4.1 [46, 47]. In order

to construct the airfoil, a cubic spline of the ordinates was merged to the leading edge

radius. The trailing edge was pinched down so that the trailing edge radius was zero.

This was necessary since the inviscid code cannot handle the flow separation induced by

the small trailing edge radius. The change in geometry is minor and should not have a

significant effect on the aerodynamics.

A 257× 65 point C-grid was constructed from the airfoil geometry. A cut line was

defined from the airfoil trailing edge to the the far field boundary. Along the j = 1 line,
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Table 4.1 Ordinates for the NACA 64A006 Airfoila

x y x y
0.0000 0.00000 0.2000 0.02557
0.0005 0.00158 0.2500 0.02757
0.0010 0.00221 0.3000 0.02896
0.0015 0.00270 0.3500 0.02977
0.0020 0.00311 0.4000 0.02999
0.0025 0.00347 0.4500 0.02945
0.0030 0.00379 0.5000 0.02825
0.0035 0.00409 0.5500 0.02653
0.0040 0.00435 0.6000 0.02438
0.0050 0.00485 0.6500 0.02188
0.0075 0.00585 0.7000 0.01907
0.0125 0.00739 0.7500 0.01602
0.0250 0.01016 0.8000 0.01285
0.0500 0.01399 0.8500 0.00967
0.0750 0.01684 0.9000 0.00649
0.1000 0.01919 0.9500 0.00331
0.1500 0.02283 1.0000 0.00013b

aL.E. radius 0.00246, T.E. radius 0.00014
bThis y-ordinate was changed to 0.00000

the cut line and airfoil surface are given by

i =







































1 − 65 cut line

65 − 129 airfoil lower surface

129 − 193 airfoil upper surface

193 − 257 cut line

(4.19)

The leading edge radius required fine spacing to reduce pressure oscillations seen in a

coarser grid. The initial spacing on the leading edge was 0.00025 chords and the spacing

was allowed to increase slowly as the curvature decreased. The grid spacing was coarsest

near the midpoint of the airfoil and then became more finely spaced near the trailing

edge to accommodate flow field gradients in this region. The final grid point spacing

at the trailing edge was approximately 0.01 chords. The radial spacing was chosen
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to minimize cell aspect ratio near the leading edge without becoming so fine as to be

considered a viscous mesh. The initial grid spacing off the wall was 0.001 chords and

spacing exponentially increased out to fifteen chord lengths.

Two control points were defined approximately 10◦ forward and aft of the airfoil

on the far field boundary. Grid points were redistributed between these control points

until the algebraic grid was nearly orthogonal to the airfoil surface. An elliptic solver

was then run on the subdomain defined by the first forty grid points off the wall and the

cut line to further improve orthogonality. The resulting grid is shown in Figure 4.2. A

close-up of the grid near the leading and trailing edges is shown in Figure 4.3.

4.5 Boundary Conditions

The boundary conditions consist of three types – solid wall (impermeable surface),

far field (inflow or outflow), and a cut. The following first order formulation comes

primarily from Whitfield and Janus [48] with modifications to include the fluxes induced

by the rigid body motion of the grid. Since the flow solver is node centered, the metrics

of transformation at the nodes are computed with standard finite difference techniques

(see Tannehill et al. [44]).

The inviscid, solid wall boundary condition requires the flow to remain tangential

to the wall. For a general airfoil geometry, the tangential flow is obtained by computing

the unit normals at each node from the metrics of transformation, i.e.

n̂x =
ηx

√

η2
x + η2

y

(4.20a)

n̂y =
ηy

√

η2
x + η2

y

. (4.20b)

The tangential velocities at the solid wall are then given by

uwall = u− Un̂x (4.21a)

vwall = v − Un̂y . (4.21b)
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Both the pressure and density gradients were assumed to be zero at the wall [43]. Thus

pwall and ρwall were set to the same values as those one grid point off the wall. The total

energy at the wall was computed from the ideal gas equation of state, Eq. (4.8).

The subsonic far field boundary conditions depends upon whether the flow is in to

or out of the computational domain. The standard unit normal direction is defined to

point into the computational domain. This direction is in the same direction (sign = 1)

as the unit normal determined from the metrics of transformation for the i = 1 and

j = 1 faces, and in the opposite direction (sign = −1) for the i = imax and j = jmax

faces. Thus, when sign × U > 0, the flow is in to the computational domain, and when

sign × U < 0 the flow is out of the computational domain.

For a subsonic inflow, three of the characteristic variables are determined from the

free stream conditions, but the fourth must be determined from the computational do-

main. For a subsonic outflow, two of the characteristic variables must be determined from

the computational domain while the third is determined from the free stream conditions

[44]. Whitfield and Janus [48] relate these characteristic variables back to the primitive

variables. For subsonic inflow the boundary conditions are given by

ρin = ρ∞ (4.22a)

pin =
1

2

(

p∞ + pref + sign ρrefaref {nx [u∞ − (uref − xt)] + ny [v∞ − (vref − yt)]}
)

(4.22b)

uin = u∞ + signnx

p∞ − pref

ρrefaref
(4.22c)

vin = v∞ + signny

p∞ − pref

ρrefaref

(4.22d)

where the reference values (pref , ρref , etc.) are obtained from the first interior node. The

subsonic outflow boundary conditions are given by

pout = p∞ (4.23a)
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ρout = ρref +
p∞ − pref

a2
ref

(4.23b)

uout = uref + sign nx

p∞ − pref

ρrefaref
(4.23c)

vout = vref + signny

p∞ − pref

ρrefaref
(4.23d)

In both cases, the total energy was computed from the ideal gas equation of state.

The boundary condition employed along the cut line of the C-grid was a simple

average. For example

p1,j =
1

2
(p2,j + pimax−1,j) (4.24)

Lift and Moment Computations

The lift and moment coefficients, assuming unit span, are given by

Cl = −
∮

airfoil

p dAy (4.25a)

Cm =

∮

airfoil

p (x dAy − y dAx) (4.25b)

These equations were derived assuming the grid underwent rigid body motion and the

moment was taken about the origin. The minus sign in the coefficient of lift equation

ensures that lift is positive up. The moment coefficient is measured positive nose up.

The components of the area vector normal to the airfoil surface are given by

dAx =
ηx

J
(4.26a)

dAy =
ηy

J
. (4.26b)

By a straightforward application of the trapezoidal rule, the lift and moment coefficients

were computed from

Cl = −pic1,1

(ηy

J

)

ic1,1
− 2

ic2−1
∑

i=ic1+1

[

pi,1

(ηy

J

)

i,1

]

− pic2,1

(ηy

J

)

ic2,1
(4.27a)
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Figure 4.4 Notation for the Pitch and Plunge Airfoil used in EULER-AE

and

Cm = pic1,1

[

xic1,1

(ηy

J

)

ic1,1
− yic1,1

(ηx

J

)

ic1,1

]

+ 2

ic2−1
∑

i=ic1+1

{

pi,1

[

xi,1

(ηy

J

)

i,1
− yi,1

(ηx

J

)

i,1

]}

+ pic2,1

[

xic2,1

(ηy

J

)

ic2,1
− yic2,1

(ηx

J

)

ic2,1

]

.

(4.27b)

The indices ic1 and ic2 are located on the trailing edge of the airfoil, where ic1 = 65 and

ic2 = 193.

4.6 Aeroelastic Equations of Motion

The equations of motion for the airfoil differ slightly from those presented in Sec. 2.2.

The nomenclature shown in Figure 4.4 was used by Morton and Beran [34] and was also

used in the development of EULER-AE. Viscous dampers are now included in both the

pitch and plunge axes. They are modeled by [34]

Dα = 2ζαmr
2
αb

2ωα (4.28a)

Dh = 2ζymωh (4.28b)
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The location of the center of gravity is measured from the airfoil leading edge and is

scaled by the airfoil chord. Plunge is measured positive up and is also scaled by the

airfoil chord. Additionally, the nondimensionalization for reduced velocity is given by

Vr =
V∞
ωαc

(4.29)

and the time t is given in Eq. (4.1). Cubic and quintic nonlinear responses are still

assumed for the pitch spring. With the above assumptions and the remaining nondimen-

sional parameters given in Sec. 2.2, the equations of motion become

ÿ +
xα

2
α̈ + 4ζy

ωr

Vr

ẏ + 4

(

ωr

Vr

)2

y =
2

µsπ
Cl (4.30a)

xαÿ +
r2
α

2
α̈+ 2ζα

r2
α

Vr

α̇ + 2
r2
α

V 2
r

(

α + βαα
3 + γαα

5
)

=
4

µsπ
Cm . (4.30b)

By letting

S =

















s1

s2

s3

s4

















=

















α

α̇

y

ẏ

















(4.31)

the equations of motion can be written in the compact notation

[M ]Ṡ + [K1]S + [K3]S
3 + [K5]S

5 = G (4.32)

where the mass matrix is

[M ] =

















1 0 0 0

0 xα

2
0 1

0 0 1 0

0 r2
α

2
0 xα

















, (4.33a)
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the linear stiffness matrix is

[K1] =

















0 −1 0 0

0 0 4
(

ωr

Vr

)2

4ζy
ωr

Vr

0 0 0 −1

r2
α

V 2
r

2ζα
r2
α

Vr
0 0

















, (4.33b)

the nonlinear stiffness matrices are

[K3] =

















0 0 0 0

0 0 0 0

0 0 0 0

2 r2
α

V 2
r
βα 0 0 0

















[K5] =

















0 0 0 0

0 0 0 0

0 0 0 0

2 r2
α

V 2
r
γα 0 0 0

















(4.33c)

and the aerodynamic forcing term is

G =

















0

f

0

g

















=

















0

2
µsπ

Cl

0

4
µsπ

Cm

















. (4.33d)

Solving for Ṡ yields

Ṡ = [M ]−1
(

G − [K1]S− [K3]S
3 − [K5]S

5
)

(4.34)
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which fully expanded becomes

















ṡ1

ṡ2

ṡ3

ṡ4

















=

















s2

2
r2
α−x2

α
[g1 − xαf1]

s3

1
r2
α−x2

α
[r2

αf1 − xαg1]

















(4.35)

where

f1 = f − 4

(

ωr

Vr

)2

s3 − 4ζy
ωr

Vr

s4 (4.36a)

g1 = g − 2
r2
α

V 2
r

(

s1 + βαs
3
1 + γαs

5
1

)

− 2ζα
r2
α

Vr

s2 . (4.36b)

Equation (4.35) is integrated explicitly in time by the two-stage Runge-Kutta method

already described.

4.7 Rigid Body Motion

At each step in time, the grid is translated and rotated with respect to the elastic

axis, where the elastic axis is initially placed at the origin. Defining

∆α = αn − αn−1 (4.37a)

∆y = yn − yn−1 (4.37b)

the translation is accomplished by

y∗ = yn−1 + ∆y (4.38)

and the rotation by





xn

yn



 =





cos(∆α) sin(∆α)

− sin(∆α) cos(∆α)









xn−1

y∗



 . (4.39)
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The transformation metrics are unaffected by the translation, but must be rotated by

the same rotation matrix in Eq. (4.39) in order for the area vectors to remain normal to

the cell faces.

4.8 Sample Cases

Two static cases and an LCO case are presented as validation of the research code.

The static cases are compared with results from FLUENTTM and with experimental data

[42]. The first case was run atM∞ = 0.86 and α = 0 and the second case was run atM∞ =

0.85 and α = 4◦. The resulting pressure distributions are shown in Figure 4.5. Both

EULER-AE and FLUENTTM are in very good agreement with one another. The predicted

shock locations are one cell different between the two codes. This is probably due to

EULER-AE being run with a third order spacial scheme, while FLUENTTM is limited to

a second order scheme. The difference in order of spatial discretization also explains why

the shock is more sharply defined with EULER-AE. As expected, the inviscid shocks

are stronger and further aft on the wing than the experimental data, especially at large

angles of attack (Figure 4.5(b)). This will lead to a prediction of a much larger lift
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Figure 4.5 Pressure distributions on the NACA 64A006 airfoil
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coefficient for the inviscid cases. While comparison with the experimental data is only

fair, due to the lack of viscous and turbulence modeling, the code to code comparison

with FLUENTTM indicates that EULER-AE properly predicts an inviscid flow over the

airfoil.

The time accurate fluid-structure interaction was verified by comparing with an

LCO prediction given by Morton and Beran [34]. A complete validation was not possible

due to the different formulations of EULER-AE and Morton and Beran [34]. EULER-

AE employs a matched point analysis whereas the method of Morton and Beran [34]

employs a non-matched point analysis. A matched point analysis ensures the reduced

velocity, freestream air density and freestream Mach number are consistent with standard

atmospheric conditions [49]. A given density and Mach number implies a freestream

velocity which in turn implies the values of the viscous dampers and spring constants,

as shown in Eqs. (4.29) and (4.30). Thus, the amplitude and frequency of the coupled

response from a matched point and non-matched point analysis will not necessarily be

the same (see Appendix A).

Morton and Beran [34] use the following parameters to obtain an LCO from the

NACA 64A006 airfoil with linear pitch (βα = γα = 0) and plunge springs.

xcg = 0.375 xα = −0.25 r2
α = 0.25

M∞ = 0.85 µs = 125 ωr = 0.2

ζy = 0.5 ζα = 0.5

(4.40)

At a reduced velocity of Vr = 11 and standard sea level conditions (p∞ = 101325 N/m2

and ρ∞ = 1.225 kg/m3), EULER-AE predicts the pitch and plunge LCOs shown in

Figure 4.6. Table 4.2 shows the differences between the results from EULER-AE and

Morton and Beran [34]. The shorter period from EULER-AE indicates that the pitch

spring stiffness for the aeroelastic system is greater than that from Morton and Beran

[34]. However, the larger amplitudes in pitch and, especially, plunge indicate just the
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Table 4.2 Differences between LCOs from EULER-AE and Morton and Beran [34]

αLCO yLCO Period Flutter Point
EULER-AE 15.8◦ 0.176 32.9 6.78
Reference [34] 13.0◦ 0.020 61.6 10.28

opposite. The reason for the apparent discrepancy, as will demonstrated in the next

chapter, is the flutter point for the matched point aeroelastic system is located at a much

lower reduced velocity (Vr ≈ 6.78) than that of the non-matched point aeroelastic system

(Vr = 10.28).

4.9 Summary

An inviscid aeroelastic code has been developed to investigate the response of a

nonlinear airfoil. The equations and numerical procedures used by the code EULER-

AE were described. Sample solutions to verify and validate the numerical procedures

were presented. In the next chapter, this code is used to determine the effects of initial

condition and parametric uncertainty on the nonlinear NACA 64A006 airfoil.
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V. A CFD Application of the Stochastic Projection Method via B-

Splines

5.1 Introduction

A typical aeroelastic simulation performed by EULER-AE took approximately 36

to 48 hours to reach a fully developed LCO, making the MCS approach to determining

PDFs of a response impractical. The stochastic algorithm developed in Chapter III

was applied to this CFD application to determine the subcritical response of the NACA

64A006 airfoil. The subcritical case was examined since LCOs can be obtained below

the classically defined flutter point.

To produce a subcritical response with a turning point, such as the one shown in

Figure 2.6, nonlinear structural parameters were chosen for the NACA 64A006 airfoil.

Care was taken to choose parameters such that pitch and plunge excursions were still

valid in the context of an Euler code, i. e. small amplitude LCOs. With the parameters

chosen, the flutter point, turning point, and bifurcation diagram were estimated from

numerous computational runs. To demonstrate the utility of the stochastic algorithm in

estimating PDFs and probabilities of failure in this CFD application, a single reduced

velocity below the flutter point was examined (Vr = 6.5). Probability density functions of

the LCO amplitude in both pitch, αLCO, and plunge, yLCO, and of the coupled frequency

of the response, ωLCO, estimated from the stochastic projection method via B-splines are

presented. Refined B-spline surfaces are also presented to demonstrate convergence of

the PDFs and thus provide a validation of the stochastic algorithm.

5.2 Bifurcation Diagram of the Aeroelastic System

Development of the bifurcation diagram begins with an estimation of the flutter

point. Recall from Sec. 2.4 that the flutter point is a loss of linear stability and its location

is unaffected by the nonlinear parameters. Gordnier and Melville [7] efficiently estimate

the flutter point of an aeroelastic system by first computing a few cycles at reduced
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Figure 5.1 Examples of the pitch response

velocities above and below the flutter point and then comparing amplitude factors as the

cycles either increase or decrease. The amplitude factor is defined as the ratio of the peak

magnitude with the magnitude of the previous peak with the same sign (i.e., one period)

[7]. The parameters given in Eq. (4.40) with βα = γα = 0 provide a supercritical response

from which the flutter point can be estimated. With an initial pitch of α(0) = 0.1◦, cases

were run at reduced velocities of Vr = 6.6, 6.7, 6.8, 6.9, and 7.0. Examples of the

different pitch responses are shown in Figure 5.1. Note that the amplitudes are of such

small magnitudes that any nonlinear restoring forces would be completely unimportant,

i.e. α3, α5 ≪ 0. An average of the last few amplification factors for each of the responses

results in the plot show in Figure 5.2. From Figure 5.2 the flutter point is estimated to

occur at Vr ≈ 6.78.

Once the flutter point was determined, nonlinear parameters were selected to pro-

duce a subcritical response with a turning point. Following the model problem, a cubic

spring constant of βα < 0 was chosen to destabilize the aeroelastic system below the flut-

ter point. The goal was to choose a βα such that the aeroelastic system was destabilized

at a small initial pitch angle. Numerical experimentation led to a value of βα = −30,

which caused the aeroelastic system to become unstable with α(0) ≈ 3◦ at a reduced
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Figure 5.3 LCO due to a subcritical response, Vr = 6.5, α(0) = 3◦, βα = −30, γα = 500

velocity of Vr = 6.5. The quintic spring constant γα was then chosen to restabilize the

system. Again through numerical experimentation, a value of γα = 500 was selected.

This value resulted in an LCO at Vr = 6.5 with an initial pitch angle of α(0) = 3◦, as

shown in Figure 5.3. For clarity, the parameters of the aeroelastic system are presented

again. The structural parameters, with the inclusion of the nonlinear spring constants,
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are

xcg = 0.375 xα = −0.25 r2
α = 0.25

µs = 125 ζy = 0.5 ζα = 0.5

ωr = 0.2 βα = −30 γα = 500 ,

(5.1)

and the aerodynamic parameters are

p∞ = 37612 N/m2 ρ∞ = 0.5489 kg/m3 M∞ = 0.85 (5.2)

The freestream pressure and density correspond to an altitude of 25,000 ft.

With the parameters chosen, numerous computer runs were conducted on a range of

reduced velocities at and below the flutter point to map out the subcritical bifurcation.

In each case a sufficiently large initial pitch angle of α(0) = 7◦ was chosen to ensure

the aeroelastic system would exhibit LCO. It was found that the system would rapidly

exhibit LCO or rapidly proceed to a stationary response near the turning point, as shown

in Figure 5.4. The turning point was estimated at Vr ≈ 6.11. The resulting bifurcation

diagram is shown in Figure 5.5.
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5.3 Uncertainty Quantification

As with the model problem, an initial condition uncertainty and a parametric

uncertainty were added to the formulation. A Gaussian distribution in the uncertainties

was assumed. These uncertainties are, as before, given by

α(0) = ᾱ(0) + ξ1α̃(0) (5.3a)

βα = β̄α + ξ2β̃α (5.3b)

For this aeroelastic system, the following mean and standard deviation values were used

ᾱ(0) = 0 β̄α = −30 (5.4a)

α̃(0) = 1.5◦ β̃α = 3 (5.4b)

Samples of the responses in pitch, plunge, and frequency were obtained at the nodes

given in Table 3.1 at a reduced velocity of Vr = 6.5. The following is a summary of the

results.
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Figure 5.6 B-spline surfaces of the pitch response (I = 2, J = 8)

I = 2, J = 2, 4, 8

The effect of increasing resolution on the ξ2 axis (uncertainty in the cubic spring

constant) as the resolution on the ξ1 axis (uncertainty in the initial pitch angle) remained

fixed was investigated first. Each simulation was carried out to tmax ≈ 500 or until the

LCO became fully developed. A fully developed LCO was considered achieved when two

successive amplitudes, αLCO, were within 0.1◦ of each other. The samples obtained from

the simulations were used to build the B-spline (piecewise linear) surfaces from Eq. (3.3).

An example of the resulting surfaces is shown in Figure 5.6.
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Immediately of note from the B-spline surface in Figure 5.6 is that, as in the model

problem, the symmetric airfoil and the zero mean initial pitch angle lead to symmetry

on the ξ1 axis. Also, if an LCO develops for a given set of structural parameters, the

amplitude of the LCO is the same regardless of the initial pitch angle. These two proper-

ties of the B-spline surface for this aeroelastic system can lead to a reduction in both the

number and the computational effort of simulations as the resolution increases in either

axis. It will be noted later in the discussion when these properties were invoked.

A bifurcation is observed on the ξ2 axis. This bifurcation occurs between ξ2 =

1.53415 and ξ2 = 2.5. This corresponds to βα = −25.398 and βα = −22.5, respectively.

Thus, as the overall pitch spring stiffness becomes greater, i.e. less destabilization from

the cubic spring constant, LCO will not develop for any initial pitch angle. This is an

example of how uncertainty in the structural components has an effect on the LCO of an

aeroelastic system.

Also shown on Figure 5.6 are the results of a 10,000 MCS obtained from the B-spline

surface. (Note: ten thousand randomly generated Gaussian variables can occasionally,

although rarely, exceed the interval [−4, 4]. When this occurred, the value of that random

variable was mapped to the closest boundary.) As expected, the MCS samples are con-

centrated near the zero means. Since the discontinuities associated with the bifurcations

are not sharply resolved, many realizations fall on values intermediate to the stationary

response and the LCO response. The effect of these intermediate values can be seen in

the PDFs of the response shown in Figure 5.7. Since the bulk of intermediate values are

a result of the poor resolution in the ξ1 axis, increasing resolution in the ξ2 axis had little

effect on the the convergence of the PDF of the pitch response. A very close examination

reveals that with J = 4 and J = 8 the PDFs are essentially identical. Further investi-

gation of the uncertainty quantification is, therefore, continued holding the resolution in

the ξ2 axis fixed at J = 4.
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Figure 5.7 Pitch Response

I = 2, 4, 8; J = 4

Having examined the stochastic response surface with increasing resolution along

the ξ2 axis, simulations were then performed with increasing resolution on the ξ1 axis.

Since the amplitudes of the LCOs were already known from the previous set of sim-

ulations, these simulations were carried out just far enough in time (tmax < 250) to

determine if an LCO was developing or if the response was damped. Examples of the

resulting B-spline surfaces are shown in Figure 5.8. Note that as the resolution increases,

the discontinuity is more sharply refined. This refinement leads to fewer realizations

intermediate to the LCO and the stationary responses.

As expected, fewer intermediate realizations leads to a better convergence for the

PDFs of the response, as shown in Figure 5.9. With each increase in resolution, the PDFs

show fewer intermediate realizations while at the same time an area near αLCO ≈ 10◦

remains unchanged. Note that from Figure 5.5, the mean responses at Vr = 6.5 is

αLCO = 10.1◦. Thus, from these simulations, it is estimated that a bimodal response

exists with the primary response at αLCO = 0 and the secondary response at αLCO = 10◦.
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(a) I = 2, J = 4 (b) I = 8, J = 4

Figure 5.8 B-spline surfaces of the pitch response (αLCO)
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Figure 5.9 Pitch Response

Additionally, the uncertainty bounds for the secondary response are estimated to be from

αLCO = 9◦ to αLCO = 12◦. The subcritical response and the uncertainty bounds were

identified with a sample size of 180 simulations.
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Figure 5.10 Symmetric responses with βα = −42, (ξ2 = −4)

5.4 Refined B-spline surface

A better estimate of the subcritical response can easily be obtained by making use

of the information already gained. The locations of the bifurcations have been bounded

and can be better refined with a simple binary search. Further validation of this method

can also be shown by refining the B-spline surface at a different set of nodes. Thus the

nodes chosen along the ξ2 axis were uniformly spaced until reaching the bifurcation while

the nodes along the ξ1 were selected to refine the bifurcations on that axis. Additionally,

only the positive half of the ξ1 axis was investigated and symmetry was assumed on the

negative half of the axis. A few simulations were conducted to verify this symmetry,

such as the ones shown in Figure 5.10. With the above assumptions, approximately one

hundred simulations were performed to obtain the nodes for the refined B-spline shown in

Table 5.1. Since the nodes no longer compose a regular mesh, the multivariate B-spline

approach is difficult to implement. The 10,000 run MCS is accomplished by a simple

linear interpolation scheme, which is equivalent to a piecewise linear approximation of

the second order B-spline [30]. A comparison of the B-spline surface obtained with I = 8

and J = 4 with the refined B-spline surface and the associated MCS realizations is shown
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Figure 5.11 Pitch Response

Table 5.1 Nodes for the refined B-spline surface

ξ1 ξ2 αLCO ξ1 ξ2 αLCO ξ1 ξ2 αLCO

-4 -4 15.6◦ -4 -1 10.9◦ -4 2.03333 8.89◦

-1.7 15.6◦ -1.83667 10.9◦ -3.26 8.89◦

-1.69667 0 -1.83333 0 -3.25667 0
1.69667 0 1.83333 0 3.25667 0

1.7 15.6◦ 1.83667 10.9◦ 3.26 8.89◦

4 15.6◦ 4 10.9◦ 4 8.89◦

-4 -3 13.9◦ -4 0 10.1◦ -4 2.06666 0
-1.73 13.9◦ -1.91667 10.1◦ -3.26 0

-1.72667 0 -1.91333 0 -3.25667 0
1.72667 0 1.91333 0 3.25667 0

1.73 13.9◦ 1.91667 10.1◦ 3.26 0
4 13.9◦ 4 10.1◦ 4 0
-4 -2 12.0◦ -4 1 9.53◦ -4 4 0

-1.78 12.0◦ -2.04 9.53◦ -3.26 0
-1.77667 0 -2.03667 0 -3.25667 0
1.77667 0 2.03667 0 3.25667 0

1.78 12.0◦ 2.04 9.53◦ 3.26 0
4 12.0◦ 4 9.53◦ 4 0
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Figure 5.12 Convergence of the pitch subcritical response

in Figure 5.11. A PDF of the pitch response obtained from the refined B-spline surface

is seen to achieve convergence in Figure 5.12, where the intermediate values between the

stationary response and the LCO response are practically non-existent.

Plunge and Coupled Frequency

The same uncertainty analysis was investigated for the plunge LCO amplitude and

the coupled frequency. B-spline surfaces of the plunge LCO amplitude, yLCO, and the

coupled frequency, ωLCO were developed for the I = 8 and J = 4 Gaussian nodes and

for the refined nodes. These surfaces are shown in Figures 5.13 and 5.14. Convergence

of the PDFs for these responses is shown in Figures 5.15 and 5.16.

5.5 Probability of Failure

The PDFs of the LCO responses allow an estimate the probability of failure for the

aeroelastic system. As with the model problem, criteria need to be chosen that define

the failure mode. Recalling that the subcritical LCO response develops below the flutter
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point, failure is defined as the onset of an LCO. In order to perform the integration of

the PDFs, and to avoid the smoothing error inherent in the Parzen windowing approach,

failure in each mode (pitch, plunge, and frequency) were set at

αfail = 1◦ (5.5a)

yfail = 0.01 (5.5b)

ωfail = 1 Hz (5.5c)

With these failure modes defined, the probability of failure was estimated from the PDFs

obtained from the Gaussian nodes as well as from the refined nodes. The results are

summarized in Table 5.2. As resolution increases, the estimation of the probability of

failure improves until, at the refined surface, all three probability of failures converge

to the same value. The convergence of all three probabilities of failure to the same

value is an expected result since the three events (pitch, plunge, and frequency) are not

independent of each other. If the aeroelastic system experiences a pitch (plunge) LCO,

it must also exhibit a plunge (pitch) LCO, and these LCOs will occur at some frequency.

Due to the numerous realizations at the intermediate values, the Gaussian nodes provide

a conservative estimate of the probability of failure while the refined nodes provides

an estimate comparable to a full-order MCS. The total number of actual simulations

performed, however, are two orders of magnitude less than that of a 10,000 run MCS.

Table 5.2 Estimates of the Probability of Failure

Probability of Failure (%)
Nodes Pitch Plunge Frequency

I = 2, J = 4 38.1 39.7 36.9
I = 4, J = 4 19.6 20.3 18.9
I = 8, J = 4 10.3 10.6 10.1

Refined 4.36 4.36 4.36
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5.6 Summary

This chapter demonstrated the efficiency of the stochastic projection method via

B-splines in estimating the probability of failure for a CFD application of an aeroelastic

system. The structure was a low fidelity, two degree of freedom, nonlinear airfoil modeled

in a higher fidelity inviscid transonic flow. The number of simulations actually performed

was two orders of magnitude less than a full order MCS. Verification of the stochastic

algorithm was demonstrated by the convergence of the PDFs to a subcritical response.
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VI. Summary and Conclusions

6.1 Summary

A stochastic algorithm based upon the PCE and FCE stochastic projection meth-

ods was developed by employing multivariate B-splines. This method is a nonintrusive

(sampling approach) that does not require the computation or storage of expected values

to estimate the stochastic projection of the response. Instead, the B-spline approach is

a collocation method that fits a surface to the nodes provided. The nodes were selected

both by a Gaussian distribution as well as a uniform distribution of probabilities.

An aeroelastic model problem was first investigated by a traditional Monte Carlo

approach. Bifurcation diagrams, PDFs, and probabilities of failure were provided for

comparison with the stochastic algorithm. The computational effort for this model prob-

lem was shown to be quite large.

A small sample set based upon a Gaussian distribution of probabilities was then

obtained. A B-spline surface was developed from which a fast MCS could be performed.

Although the LCOs developed were due to initial conditions and large time integrations,

the sampling approach removes the samples from the time domain by tracking the LCO

amplitude once the LCO is fully devloped. Results from the stochastic algorithm were

in excellent agreement with the traditional MCS approach. Additionally, the stochastic

algorithm was two orders of magnitude more efficient than the MCS approach.

The applicability of the stochastic algorithm was investigated for the more compu-

tationally demanding CFD simulation of an aeroelastic system. An inviscid aeroelastic

code (EULER-AE) was developed, verified, and validated to perform this investigation.

Parameters were selected to obtain a subcritical response with a turning point. This

response is considered high risk since large amplitude LCOs can develop below the clas-

sically defined flutter point. Monte Carlo simulations were impractical for this problem

since each simulation took 36 to 48 hours to perform. Validity of the stochastic projection

method via B-splines was determined by convergence of the PDFs and the probability
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of failure. Again, efficiency was two orders of magnitude greater than that of the Monte

Carlo approach, making this stochastic algorithm applicable to large time, CFD applica-

tions.

6.2 Conclusions

Based upon this research effort, the following conclusions were reached:

1. For large time and highly nonlinear problems, nonintrusive (sampling) methods are

more efficient than intrusive methods. This point was alluded to in the introduction.

For large time problems, the frequency content in the stochastic domain at any

particular time can become so large, or contain so many discontinuities, that even

a basis that might be considered optimal would require such a high order expansion

that all computational efficiency is lost.

2. Bifurcations are represented by discontinuities in the stochastic domain, making

spectral approaches inefficient. When the spectral approach is recognized as an

attempt to approximate a global response surface, its limitations are the same as

in any interpolation problem. An infinite expansion is required to sharply define a

discontinuity.

3. Efficiency can be regained by distribution based sampling and approximating the

global response surface with a multivariate B-spline. Splines are the most appropri-

ate method for approximating a peicewise continuous function in any interpolation

problem. The selection of nodes should initially be based on the distribution of

input uncertainty. Refinement comes once information is obtained from an initial

set of simulations.

4. The stochastic projection method via B-splines is applicable to CFD based research.

Uncertainty quantification is an expensive proposition. As CFD codes become

faster due to improvements of algorithms and processor power, the ability to con-

duct multiple simulations, though not at the level of a full-order MCS, moves into
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the realm of possibilities. The stochastic algorithm presented here makes uncer-

tainty quantification possible at the current level of processor power.

6.3 Recommendations for Future Research

The stochastic algorithm was applied to an inviscid, transonic aeroelastic prob-

lem. The next step in the study of aeroelastic responses would be to include viscous

fluxes, turbulence modeling, and eventually a three dimensional configuration. Since the

method is nonintrusive, any research or commercial code could be used to conduct this

investigation.

Future research with the stochastic algorithm should include:

1. The inclusion of higher order multivariate splines The piecewise linear interpolation

was nearly optimal for the two dimensional aeroelastic system. This will not always

be the case. Indeed, for the projection with respect to ξ2, Figures 3.2(b) and 5.11(b),

a higher order interpolation would provide a better fit than the piecewise linear

interpolation. However, the bifurcation in Figure 5.11(b) produces overshoots with

higher order B-splines. The Akima spline [30] is shape preserving and may be more

appropriate for this type of projection.

2. Determination of the maximum number of uncertainties that can be included in the

algorithm. The number of simulations increases geometrically if the same number

of nodes are used in each dimension of uncertainty. Thus, there is a practical limit

to the number of uncertainties that can be modeled before the computational effort

reaches that of a Monte Carlo simulation. Investigating each dimension individually

and determining the maximum nodes required before moving to the next dimension,

as was done with the CFD application, can lead to an algebraic increase in effort

as dimensions are added.

3. Multiple distributions of uncertainties. In the CFD application, both Gaussian

nodes and uniformly spaced nodes were used to build the B-spline surface. This
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is an indication that, unlike other stochastic projection methods, the distribution

of uncertainties do not need to be homogeneous among the random variables. The

intervals and nodes can be selected based upon the individual distribution of the

random variables.

4. Automation. Once the Gaussian nodes were computed, an interactive approach

was employed to refine the sampling mesh. Automating this process would be a

major undertaking but could provide a great value to the aircraft designer.

5. Dimensional Analysis It was demonstrated that different LCO solutions were ob-

tained from the matched and non-matched point assumptions. The proper nondi-

mensional parameters for the fluid-structure coupling should be determined.
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Appendix A. Coupling of the Nondimensional Parameters

As early as 1973 [50] and as recently as 2004 [51] it has been recognized that if Mach

number is specified when solving an aeroelastic system, compatibility should be enforced

between freestream Mach number, freestream density, and the reduced velocity. This

compatibility is referred to as a matched point analysis. Other researchers [34, 40] prefer

a non-matched point solution where only the nondimensional parameters are specified

and it is assumed that a similarity solution which conforms to a matched point solution

exists. It will be shown that both approaches have limitations that exist due to the

coupling of the fluid and structure.

A straightforward dimensional analysis of the Euler equations leads to the nondi-

mensional parameters shown in Eq. (4.1). Of particular note is the nondimensionalization

of the farfield boundary condition (here the asterisk indicates a nondimensional quantity)

ρ∗
∞

= 1 (A.1a)

u∗
∞

= cosα (A.1b)

v∗
∞

= sinα (A.1c)

p∗
∞

=
1

γM2
∞

(A.1d)

Thus, a properly nondimensionalized Euler code only requires the freestream Mach num-

ber and angle of attack to compute, say, a pressure distribution over an airfoil. The

resulting solution is a similarity solution for any two given thermodynamic quantities,

say pressure (p∞) and density (ρ∞).

A similar dimensional analysis can be performed on the pitch and plunge airfoil

equations with modeled aerodynamics, Eq. (2.1). Lift and moment are scaled by the
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dynamic pressure and chord, that is

L =
1

2
ρ∞V

2
∞
c Cl(t) (A.2a)

M =
1

2
ρ∞V

2
∞
c2Cm(t) (A.2b)

It is important to recognize that for the modeled aerodynamics, the lift and moment

coefficients are functions only of time and the flow is assumed incompressible. Thus, the

nondimensionalization that leads to the reduced velocity (Vr), frequency ratio (ωr), and

mass ratio (µs) provide a similarity solution for any given dynamic pressure (ρ∞ and V∞)

and structural parameters (m, ωα, ωh, xα, and rα).

When coupling the Euler equations to the structural equations, a coupling also

occurs in the nondimensional parameters. The reduced velocity, for example, is given by

(for convenience, all lengths in this section are scaled by the chord c)

Vr =
V∞
ωαc

(A.3)

Typically the reduced velocity is taken as a free parameter in the structural problem, but

it will be shown that for the coupled fluid-structure problem the reduced velocity should

instead be derived from the remaining system parameters.

To demonstrate this assertion, consider the definition of Mach number

M∞ ≡ V∞
a∞

(A.4)

where a∞ is the freestream speed of sound and is given by

a∞ =

√

γ
p∞
ρ∞

. (A.5)
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Figure A.1 Density determined by varying ωα and p∞

The reduced velocity is then rewritten as

Vr =
M∞

ωαc

√

γ
p∞
ρ∞

. (A.6)

Rearranging terms to solve for freestream density yields

ρ∞ =
γp∞M

2
∞

ω2
αc

2V 2
r

(A.7)

Equation (A.7) shows that for a given Mach number and reduced velocity the freestream

density is a function of freestream pressure (a fluid parameter) and of the uncoupled

natural frequency in pitch (a structural parameter). The implications of this relationship

between fluid and structure parameters is shown in Figure A.1. To obtain these results,

the Mach number was selected as M∞ = 0.85 and the reduced velocity as Vr = 11.

The freestream pressure was allowed to vary with altitude according to standard day

tables and the uncoupled natural frequency in pitch was allowed to vary from ωα = 10

to ωα = 50. Figure A.1(a) shows the large variation obtained in density, particularly

near sea level pressure. These results are typical of a non-matched point analysis where
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only the nondimensional parameters (to include Mach number and reduced velocity) are

specified. In order to obtain the solution for ωα = 10Hz at sea level pressure, density is

on the order of 8 kg/m3, an unrealistic value for air. Even at low pressures, p∞ ≈ 20000

N/m2 (approximately 40,000 ft pressure altitude), density varies from greater than sea

level values (ρ∞ ≈ 1.67 kg/m3) to approximately 70,000 ft density altitude. In contrast,

a matched point solution specifies a pressure and density that vary with a standard day.

Figure A.1(b) shows where the standard day pressure and density lie with comparison to

the non-matched point data. Note that the matched point solution allows only a small

range of possible structural parameters. One point is clearly evident from Figures A.1(a)

and (b), i.e., the matched point and non-matched point parameters will not necessarily

provide the same solution.

The above analysis indicates similarity solutions for a general structure and general

freestream conditions are difficult to obtain. In order to obtain solutions of realistic

structures in realistic freestream conditions, the following parameters should be specified:

two thermodynamic properties (such as p∞ and ρ∞) and the structural parameters (m,

ωα, ωh, xα and rα). The reduced velocity and frequency and mass ratios become derived

quantities. The only free parameter is then Mach number.
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Appendix B. A Summary of Computer Runs

The following are the contents of the data compact disc (CD).

1. Directory containing EULER-AE source files and executable. Also contains a make-

file for a 64-bit processor. Two grid files are included, one for the NACA 64A006

and one for NACA 64A010 (asymmetric). The input file and the script to submit

the job are also included.

2. Directory containing the time histories of the cases run to generate the results in

this dissertation.

3. Directory containing restart files for some of the cases that were run.

A brief explanation of how to use the EULER-AE code is presented along with a

summary of the computer runs.

The Linux/UNIX version of EULER-AE is designed to be run from the command

line with the following statement:

./euler_ae <input_file_name> <grid_file_name> <restart_file_name>

A sample of the input file is shown in Figure B.1. The Start/Restart information

provides names for the output files. The input files restartfile and gridfile are

ignored since these are obtained from the command line. The name of the restart file to

be read in subsequent runs is saved as binary in newrestartfile. The final flowfield,

at the end of steady state convergence or the last time accurate solution, is saved as

ASCII and TecplotTM format in fflow. The animation file for TecplotTM is saved as

ASCII in mflow. The time history file, timehist, is saved in ASCII. The first variable is

nondimensional time, the second is pitch, the third is plunge, the fourth is the coefficient

of lift, and the last is the moment coefficient. The grid size imax and jmax must match

the grid input file.

The inflow and reference length parameters are entered next. The code expects

dimensional SI units for input and will perform the nondimensionalizations. Some of
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Input paramters for EULER_AE

Start/Restart Information

1 ! (restart) 0 = restart, 1 = new case

restartcase293.dat ! (restartfile) Name of restart file to be read

restartcase293.dat ! (newrestartfile) Name of new restart file to be written

fflowcase293.dat ! (fflow) Final flow file

mflowcase293.dat ! (mflow) Movie flow file (animation)

timehistcase293.dat ! (timehist) Time history of pitch, plunge, C_l, and C_m

naca64a006v3.dat ! (gridfile) Name of grid file

257 ! (imax)

65 ! (jmax)

Inflow and reference length

37612.0 ! (p_in) Free-stream pressure (N/m^2)

0.5489 ! (rho_in) Free-stream density (kg/m^3)

1.7887e-5 ! (mu_in) Free-stream viscosity (kg/ms^2)

287.05 ! (R_gas) Gas constant (N*m/kg*K)

1.4 ! (gamma) Ratio of specific heats

0.850 ! (M_in) Free-stream Mach

6.00 ! (aoa_deg) Angle of attack (degrees)

0.72 ! (Pr) Prandtl Number

1.0000 ! (ref_len) Reference length (m)

288.15 ! (T_w) Wall Temperature (K) (Make this negative for adiabatic wall)

Program Parameters

25000 ! (mmax) maximum number of time steps (steady-state)

26000 ! (jump) output interval

1.0e-5 ! (tol) Convergence tolerance (steady state)

500.0 ! (tend) Final time (time accurate)

1 ! (istep) 0 = use computed time step, 1 = user defined time step (time accurate)

0.00020 ! (user_dt) user defined time step (time accurate)

Solution Parameters

0 ! (march) 0 = time explicit, 1 = dual time implicit

1.00 ! (CFL) Stability time step control

1 ! (method) 0 = JST 1 = Roe

1.0 ! (psi) 0 = 1st order Roe, 1 = higher order Roe

0.333333333333333 ! (kappa) -1 = O(2) upwind, 0 = O(2) Fromm, 1/3 = O(3) upwind, 1 = O(2) cen. diff.

1 ! (limiter) 0 = no limiter, 1 = minmod, 2 = superbee

0.0 ! (ent) 0 = no entropy fix, 1 = Harten and Hyman, 4 = Kermani and Plet

Boundary Conditions

0 ! (iminbndry) imin boundary condition, 0 = farfield, 1 = wall

0 ! (imaxbndry) imax boundary condition, 0 = farfield, 1 = wall

1 ! (jminbndry) jmin boundary condition, 0 = farfield, 1 = wall

0 ! (jmaxbndry) jmax boundary condition, 0 = farfield, 1 = wall

65 ! (icut1) Set to 0 unless using a C-grid

193 ! (icut2) Will be set to imax + 1 if icut1 = 0

Airfoil Parameters

0.375 ! (x_cg) Distance (% chord) from the airfoil leading edge to the CG

-0.25 ! (x_alpha) Distance (% semi-chord) from the CG to the elastic axis

0.25 ! (r_alpha_sq) Radius (% semi-chord) of gyration (squared)

0.2 ! (omega_bar) Frequency ratio

0.5 ! (zeta_h)

0.5 ! (zeta_alpha)

-25.398 ! (beta_alpha)

500.0 ! (gamma_alpha)

125.0 ! (m_bar) mass ratio

6.50 ! (V_bar) Reduced velocity (nondimensional) (% semi-chord)

0.00 ! (plunge) Initial plunge (nondimensional) (positive in the up direction)

Figure B.1 Typical input file for EULER-AE
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these parameters (mu_in, Pr, T_w) are for a viscous code and are ignored in the current

version of EULER-AE.

The program parameters control the number of steady state iterations and the

maximum time for the time accurate integration. For a steady state solution only, set

mmax to the desired number of iterations and tend to 0. To start a time accurate solution

from a converged steady state solution or to restart a time accurate solution, set restart

to 1, mmax to 0 and tend to the desired maximum time. Since the restart file saves the

time the last integration was performed to, tend must be greater that that time in order

for the program to continue integrating. The output interval jump controls how often

each animation file is written to mflow.

The solution parameters control the type of time integration to use and the scheme

used to compute the flux vectors. The dual time step option (march set to 1) is not fully

functional and should not be used. The code is capable of computing the flux vectors from

the Jameson-Schmidt-Turkel scheme or the Roe scheme. The Roe scheme incorporates

the MUSCL scheme to allow for higher order spatial integration. Additionally, two

different limiters and entropy correction schemes can be chosen. The parameters shown

in Figure B.1 were used throughout this study, i.e. a second order explicit time integration

with a third order Roe scheme with the minmod limiter and no entropy correction.

Two different boundary conditions are set explicitly – farfield and wall. The third

is selected based upon the value of icut1. This is the cut condition. If icut1 is set to

0, no cut boundaries are assumed (e.g. a supersonic ramp). For the 257 × 65 point grid

used in this study, the values of icut1 and icut2 shown in Figure B.1 indicate a cut

boundary condition exists from 1 to 65 and 193 to 257.

Finally, the structural parameters of the airfoil are entered. These parameters are

xcg (x_cg), xα (x_alpha), r2
α (r_alpha_sq), ωr (omega_bar), ζh (zeta_h), ζα (zeta_alpha),

βα (beta_alpha), γα (gamma_alpha), and µs (m_bar). The reduced velocity Vr (V_bar)

and the initial nondimensional plunge displacement y(0) (plunge) are also entered here.

Note the initial rates α̇(0) and ẏ(0) are assumed to be zero.
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The parameters that changed from run to run were α(0) (aoa_deg), βα (beta_alpha),

γα (gamma_alpha), and Vr (V_bar). Table B.1 summarizes each of the cases. Cases 1, 2,

and 3 are not shown since they were used to perform final verification of the code.
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Table B.1 Summary of computer runs

Case α(0) βα γα Vr

4 1.0 -3.0 0.0 6.0
5 2.0 -3.0 0.0 6.0
6 3.0 -3.0 0.0 6.0
7 4.0 -3.0 0.0 6.0
8 5.0 -3.0 0.0 6.0
9 6.0 -3.0 0.0 6.0
10 7.0 -3.0 0.0 6.0
11 1.0 -10.0 0.0 6.6
12 2.0 -10.0 0.0 6.6
13 3.0 -10.0 0.0 6.6
14 4.0 -10.0 0.0 6.6
15 5.0 -10.0 0.0 6.6
16 6.0 -10.0 0.0 6.6
17 7.0 -10.0 0.0 6.6
18 1.0 -40.0 0.0 6.5
19 2.0 -40.0 0.0 6.5
20 3.0 -40.0 0.0 6.5
21 4.0 -40.0 0.0 6.5
22 5.0 -40.0 0.0 6.5
23 6.0 -40.0 0.0 6.5
24 7.0 -40.0 0.0 6.5
25 1.0 -40.0 2000.0 6.5
26 2.0 -40.0 2000.0 6.5
27 3.0 -40.0 2000.0 6.5
28 4.0 -40.0 2000.0 6.5
29 5.0 -40.0 2000.0 6.5
30 6.0 -40.0 2000.0 6.5
31 7.0 -40.0 2000.0 6.5
32 1.0 -40.0 2500.0 6.5
33 2.0 -40.0 2500.0 6.5
34 3.0 -40.0 2500.0 6.5
35 4.0 -40.0 2500.0 6.5
36 5.0 -40.0 2500.0 6.5
37 6.0 -40.0 2500.0 6.5
38 7.0 -40.0 2500.0 6.5
39 1.0 -40.0 2000.0 6.5
40 2.0 -40.0 2000.0 6.5
41 3.0 -40.0 2000.0 6.5
42 4.0 -40.0 2000.0 6.5
43 5.0 -40.0 2000.0 6.5
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Table A.1 Summary of computer runs (continued)

Case α(0) βα γα Vr

44 6.0 -40.0 2000.0 6.5
45 7.0 -40.0 2000.0 6.5
46 1.0 -40.0 1500.0 6.5
47 2.0 -40.0 1500.0 6.5
48 3.0 -40.0 1500.0 6.5
49 4.0 -40.0 1500.0 6.5
50 5.0 -40.0 1500.0 6.5
51 6.0 -40.0 1500.0 6.5
52 7.0 -40.0 1500.0 6.5
53 1.0 -40.0 1000.0 6.5
54 2.0 -40.0 1000.0 6.5
55 3.0 -40.0 1000.0 6.5
56 4.0 -40.0 1000.0 6.5
57 5.0 -40.0 1000.0 6.5
58 6.0 -40.0 1000.0 6.5
59 7.0 -40.0 1000.0 6.5
60 1.0 -30.0 500.0 6.5
61 2.0 -30.0 500.0 6.5
62 3.0 -30.0 500.0 6.5
63 4.0 -30.0 500.0 6.5
64 5.0 -30.0 500.0 6.5
65 6.0 -30.0 500.0 6.5
66 7.0 -30.0 500.0 6.5
67 7.0 -30.0 500.0 6.0
68 7.0 -30.0 500.0 6.1
69 7.0 -30.0 500.0 6.2
70 7.0 -30.0 500.0 6.3
71 7.0 -30.0 500.0 6.4
72 7.0 -30.0 500.0 6.6
73 7.0 -30.0 500.0 6.12
74 7.0 -30.0 500.0 6.14
75 7.0 -30.0 500.0 6.16
76 7.0 -30.0 500.0 6.18
77 7.0 -30.0 500.0 6.105
78 7.0 -30.0 500.0 6.11
79 7.0 -30.0 500.0 6.115
80 2.25 -30.0 500.0 6.5
81 2.50 -30.0 500.0 6.5
82 2.75 -30.0 500.0 6.5
83 6.0 -27.0 500.0 6.5
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Table A.1 Summary of computer runs (continued)

Case α(0) βα γα Vr

84 6.0 -24.0 500.0 6.5
85 6.0 -21.0 500.0 6.5
86 6.0 -18.0 500.0 6.5
87 6.0 -33.0 500.0 6.5
87b1 6.0 -33.0 500.0 6.5
88 6.0 -36.0 500.0 6.5
88b 6.0 -36.0 500.0 6.5
89 6.0 -39.0 500.0 6.5
89b 6.0 -39.0 500.0 6.5
90 6.0 -42.0 500.0 6.5
91 7.0 -30.0 500.0 6.65
92 7.0 -30.0 500.0 6.7
93 7.0 -30.0 500.0 6.75
94 2.8 -30.0 500.0 6.5
95 2.85 -30.0 500.0 6.5
96 2.9 -30.0 500.0 6.5
97 2.95 -30.0 500.0 6.5
98 7.0 30.0 500.0 6.55
99 7.0 30.0 500.0 6.6
100 7.0 30.0 500.0 6.65
101 6.0 -23.5 500.0 6.5
102 6.0 -23.0 500.0 6.5
103 6.0 -22.5 500.0 6.5
104 6.0 -22.0 500.0 6.5
105 6.0 -23.9 500.0 6.5
106 6.0 -23.8 500.0 6.5
107 6.0 -23.7 500.0 6.5
108 6.0 -23.6 500.0 6.5
109 7.0 30.0 500.0 6.8
110 7.0 30.0 500.0 6.9
111 7.0 30.0 500.0 7.0
112 7.0 30.0 500.0 7.1
113 2.86 -30.0 500.0 6.5
114 2.865 -30.0 500.0 6.5
115 2.87 -30.0 500.0 6.5
116 2.875 -30.0 500.0 6.5
116b 2.875 -30.0 500.0 6.5
117 2.88 -30.0 500.0 6.5
117b 2.88 -30.0 500.0 6.5
118 2.885 -30.0 500.0 6.5
1 “b” indicates a restart file
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Table A.1 Summary of computer runs (continued)

Case α(0) βα γα Vr

119 2.89 -30.0 500.0 6.5
120 -2.875 -30.0 500.0 6.5
121 -2.87 -30.0 500.0 6.5
122 0.5 -42.0 500.0 6.5
123 1.0 -42.0 500.0 6.5
124 1.5 -42.0 500.0 6.5
125 2.0 -42.0 500.0 6.5
126 2.5 -42.0 500.0 6.5
127 3.0 -42.0 500.0 6.5
128 3.0 -39.0 500.0 6.5
129 3.0 -36.0 500.0 6.5
130 3.0 -33.0 500.0 6.5
131 3.0 -30.0 500.0 6.5
132 7.0 30.0 500.0 7.1
133 7.0 30.0 500.0 7.2
134 2.95 -42.0 500.0 6.5
135 2.9 -42.0 500.0 6.5
136 2.85 -42.0 500.0 6.5
137 2.8 -42.0 500.0 6.5
138 2.75 -42.0 500.0 6.5
139 2.7 -42.0 500.0 6.5
140 2.69 -42.0 500.0 6.5
141 2.68 -42.0 500.0 6.5
142 2.67 -42.0 500.0 6.5
143 2.66 -42.0 500.0 6.5
144 2.65 -42.0 500.0 6.5
145 2.64 -42.0 500.0 6.5
146 2.63 -42.0 500.0 6.5
147 2.62 -42.0 500.0 6.5
148 2.61 -42.0 500.0 6.5
149 2.60 -42.0 500.0 6.5
150 2.59 -42.0 500.0 6.5
151 7.0 30.0 500.0 7.3
151b 7.0 30.0 500.0 7.3
152 7.0 30.0 500.0 7.4
152b 7.0 30.0 500.0 7.4
153 7.0 30.0 500.0 7.5
153b 7.0 30.0 500.0 7.5
154 7.0 30.0 500.0 7.2
154b 7.0 30.0 500.0 7.2
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Table A.1 Summary of computer runs (continued)

Case α(0) βα γα Vr

155 2.585 -42.0 500.0 6.5
156 2.58 -42.0 500.0 6.5
157 2.575 -42.0 500.0 6.5
158 2.57 -42.0 500.0 6.5
159 2.565 -42.0 500.0 6.5
160 2.56 -42.0 500.0 6.5
161 2.555 -42.0 500.0 6.5
162 2.55 -42.0 500.0 6.5
163 2.545 -42.0 500.0 6.5
164 2.54 -42.0 500.0 6.5
165 2.535 -42.0 500.0 6.5
166 2.53 -42.0 500.0 6.5
167 2.525 -42.0 500.0 6.5
168 -2.545 -42.0 500.0 6.5
169 -2.55 -42.0 500.0 6.5
170 2.61 -39.0 500.0 6.5
171 2.62 -39.0 500.0 6.5
172 2.63 -39.0 500.0 6.5
173 2.64 -39.0 500.0 6.5
174 2.65 -39.0 500.0 6.5
175 2.66 -39.0 500.0 6.5
176 2.67 -39.0 500.0 6.5
177 2.68 -39.0 500.0 6.5
178 2.69 -39.0 500.0 6.5
179 2.555 -39.0 500.0 6.5
180 2.56 -39.0 500.0 6.5
181 2.565 -39.0 500.0 6.5
182 2.57 -39.0 500.0 6.5
183 2.575 -39.0 500.0 6.5
184 2.58 -39.0 500.0 6.5
185 2.585 -39.0 500.0 6.5
186 2.59 -39.0 500.0 6.5
187 2.595 -39.0 500.0 6.5
188 2.6 -39.0 500.0 6.5
189 2.605 -39.0 500.0 6.5
190 2.66 -36.0 500.0 6.5
191 2.665 -36.0 500.0 6.5
192 0.5 30.0 500.0 6.8
192b 0.5 30.0 500.0 6.8
193 0.5 30.0 500.0 6.9
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Table A.1 Summary of computer runs (continued)

Case α(0) βα γα Vr

194 0.5 30.0 500.0 7.0
195 0.5 30.0 500.0 7.1
196 0.5 30.0 500.0 6.85
197 2.67 -36.0 500.0 6.5
198 2.675 -36.0 500.0 6.5
199 0.1 30.0 500.0 6.75
200 2.76 -33.0 500.0 6.5
201 2.765 -33.0 500.0 6.5
202 2.77 -33.0 500.0 6.5
203 2.775 -33.0 500.0 6.5
204 2.9 -27.0 500.0 6.5
205 2.925 -27.0 500.0 6.5
206 2.95 -27.0 500.0 6.5
207 2.975 -27.0 500.0 6.5
208 3.0 -27.0 500.0 6.5
209 2.755 -33.0 500.0 6.5
210 2.75 -33.0 500.0 6.5
211 2.745 -33.0 500.0 6.5
212 2.74 -33.0 500.0 6.5
213 2.735 -33.0 500.0 6.5
214 2.73 -33.0 500.0 6.5
215 3.05 -27.0 500.0 6.5
216 3.10 -27.0 500.0 6.5
217 3.15 -27.0 500.0 6.5
218 3.20 -27.0 500.0 6.5
219 3.25 -27.0 500.0 6.5
220 3.30 -27.0 500.0 6.5
221 3.35 -27.0 500.0 6.5
222 0.1 30.0 500.0 6.7
223 0.1 30.0 500.0 6.8
224 0.1 30.0 500.0 6.9
225 0.1 30.0 500.0 7.0
226 3.055 -27.0 500.0 6.5
227 3.06 -27.0 500.0 6.5
228 3.065 -27.0 500.0 6.5
229 3.070 -27.0 500.0 6.5
230 3.075 -27.0 500.0 6.5
231 3.080 -27.0 500.0 6.5
232 3.1 -23.9 500.0 6.5
233 3.125 -23.9 500.0 6.5

B-10



Table A.1 Summary of computer runs (continued)

Case α(0) βα γα Vr

234 3.15 -23.9 500.0 6.5
235 3.175 -23.9 500.0 6.5
236 3.2 -23.9 500.0 6.5
237 3.225 -23.9 500.0 6.5
238 3.25 -23.9 500.0 6.5
239 0.1 30.0 500.0 6.6
240 3.225 -23.9 500.0 6.5
241 3.26 -23.9 500.0 6.5
242 3.265 -23.9 500.0 6.5
243 3.27 -23.9 500.0 6.5
244 3.275 -23.9 500.0 6.5
245 3.28 -23.9 500.0 6.5
246 3.285 -23.9 500.0 6.5
247 3.29 -23.9 500.0 6.5
248 3.295 -23.9 500.0 6.5
249 3.3 -23.9 500.0 6.5
250 3.5 -23.9 500.0 6.5
251 3.75 -23.9 500.0 6.5
252 4.0 -23.9 500.0 6.5
253 4.25 -23.9 500.0 6.5
254 4.5 -23.9 500.0 6.5
255 4.75 -23.9 500.0 6.5
256 5.0 -23.9 500.0 6.5
257 5.25 -23.9 500.0 6.5
258 4.775 -23.9 500.0 6.5
259 4.8 -23.9 500.0 6.5
260 4.825 -23.9 500.0 6.5
261 4.85 -23.9 500.0 6.5
262 4.875 -23.9 500.0 6.5
263 4.9 -23.9 500.0 6.5
264 4.925 -23.9 500.0 6.5
265 4.95 -23.9 500.0 6.5
266 4.975 -23.9 500.0 6.5
267 0.1 0.0 0.0 7.0
268 -2.15 -30.38 500.0 6.5
269 4.88 -23.9 500.0 6.5
270 4.885 -23.9 500.0 6.5
271 4.89 -23.9 500.0 6.5
272 4.895 -23.9 500.0 6.5
273 4.125 -23.9 500.0 6.5
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Table A.1 Summary of computer runs (finished)

Case α(0) βα γα Vr

274 -2.775 -31.44 500.0 6.5
275 -1.764 -32.96 500.0 6.5
276 1.748 -29.26 500.0 6.5
277 0.6263 -24.0 500.0 6.5
278 -0.825 -33.02 500.0 6.5
279 6.0 -37.5 500.0 6.5
280 6.0 -34.602 500.0 6.5
281 6.0 -33.451 500.0 6.5
282 6.0 -32.661 500.0 6.5
283 6.0 -32.023 500.0 6.5
284 6.0 -31.466 500.0 6.5
285 6.0 -30.956 500.0 6.5
286 6.0 -30.472 500.0 6.5
287 6.0 -29.528 500.0 6.5
288 6.0 -29.044 500.0 6.5
289 6.0 -28.534 500.0 6.5
290 6.0 -27.977 500.0 6.5
291 6.0 -27.339 500.0 6.5
292 6.0 -26.549 500.0 6.5
293 6.0 -25.398 500.0 6.5
294 1.7255 -26.549 500.0 6.5
295 2.30118 -26.549 500.0 6.5
296 3.75 -26.549 500.0 6.5
297 1.7255 -25.398 500.0 6.5
298 2.30118 -25.398 500.0 6.5
299 3.75 -25.398 500.0 6.5
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